A Binomial Coefficient Sum: $\sum_{m = 0}^{n} (-1)^{n-m} \binom{n}{m} \binom{m-1}{l}$
This is a special case of the identity $$\sum_k \binom{l}{m+k} \binom{s+k}{n} (-1)^k = (-1)^{l+m} \binom{s-m}{n-l},$$ which is identity 5.24 on p. 169 of Concrete Mathematics, 2nd edition. With $l = n$, $m = 0$, $s = -1$, $k = m$, and $n = l$, we see that the OP's sum is $$(-1)^{2n} \binom{-1}{l-n} = \binom{-1}{l-n}.$$ This is $(-1)^{l-n}$ when $l \geq n$ and $0$ when $l < n$, as in Fabian's comment to Plop's answer.
$$\sum_{m=0}^n (-1)^{n-m} \binom{n}{m} \binom{m-1}{l} = (-1)^{l+n} + \sum_{l+1 \leq m \leq n} (-1)^{n-m} \binom{n}{m} \binom{m-1}{l}$$ So we need to compute this last sum. It is clearly zero if $l \geq n$, so we assume $l < n$.
It is equal to $f(1)$ where $f(x)= \sum_{l+1 \leq m \leq n} (-1)^{n-m} \binom{n}{m} \binom{m-1}{l} x^{m-1-l}$. We have that $$\begin{eqnarray*} f(x) & = & \frac{1}{l!} \frac{d^l}{dx^l} \left( \sum_{l+1 \leq m \leq n} (-1)^{n-m} \binom{n}{m} x^{m-1} \right) \\ & = & \frac{1}{l!} \frac{d^l}{dx^l} \left( \frac{(-1)^{n+1}}{x} + \sum_{0 \leq m \leq n} (-1)^{n+1} \binom{n}{m} (-x)^{m-1} \right) \\ & = & \frac{1}{l!} \frac{d^l}{dx^l} \left( \frac{(-1)^{n+1}}{x} + \frac{(x-1)^n}{x} \right) \\ & = & \frac{(-1)^{n+1+l}}{x^{l+1}} + \frac{1}{l!} \sum_{k=0}^l \binom{l}{k} n(n-1) \ldots (n-k+1) (x-1)^{n-k} \frac{(-1)^{l-k} (l-k)!}{x^{1+l-k}} \end{eqnarray*}$$ (this last transformation thanks to Leibniz) and since $n>l$, $f(1)=(-1)^{l+n+1}$.
In the end, your sum is equal to $(-1)^{l+n}$ if $l \geq n$, $0$ otherwise.