A generalization of discrete Hibert's transform (Montgomery's inequality)
One can transfer the continuous $L^p$ theory to this discrete setting without difficulty.
Let's normalise $\sum_k |a_k|^p = \sum_n |b_n|^q = 1$. Consider the two quantities
$$ X_1 := \sum_{k \neq n} \frac{a_k \overline{b_n}}{\lambda_k - \lambda_n}$$
$$ X_2 := \sum_{k, n} p.v. \int_{{\bf R}^2} \varphi(s) \varphi(t) \frac{a_k \overline{b_n}}{(\lambda_k+s) - (\lambda_n+t)}\ ds dt$$
where $\varphi$ is a bump function of total mass 1. It is not difficult to show that $$ p.v. \int_{\bf R} p.v. \int_{\bf R} \varphi(s) \varphi(t) \frac{1}{(\lambda_k+s) - (\lambda_n+t)}\ dt$$ is equal to $\frac{1}{\lambda_k - \lambda_n} + O_\delta( |k-n|^{-2} )$ when $k \neq n$ and $O_\delta(1)$ when $k=n$, so we have $X_1-X_2 = O_{p,\delta}(1)$ by Schur's test. One can also write $X_2$ as $$ p.v. \int_{\bf R} \int_{\bf R} \frac{f(x) g(y)}{x-y}\ dx dy$$ where $$ f(x) := \sum_k a_k \varphi(x-\lambda_k)$$ and $$ g(y) := \sum_n b_n \varphi(x-\lambda_n)$$ so from the $L^p$ boundedness of the continuous Hilbert transform we have $X_2 = O_{p,\delta}(1)$, and the claim follows.