A lady and a monster

Since you seem to know the answer, I will give it here.

Suppose that $v_l = v_m / k $ and the radius of the lake is $r$. Then the lady can reach a distance $\frac{r}{k}$ from the centre and keep the monster directly behind her, a distance $r\left(1 + \frac{1}{k}\right)$ away. One way would be to swim in a spiral gradually edging outwards as the monster runs trying to close the distance; another would be to swim in a semi-circle of radius $\frac{r}{2k}$ away from the monster once it starts to run. And the lady can sustain this distance by going round in a circle as the monster tries in vain to close the distance.

The next stage is for the lady to try to swim direct to shore at some point away from the direction the monster is running. If the monster starts at the point $(-r,0)$ running anti-clockwise and the lady starts at the point $\left(\frac{r}{k},0\right)$ her best strategy is to head off in a straight line initially at right angles to the line between her and the monster: a less steep angle and the monster has proportionately less far to run than the lady has to swim, but a steeper angle and it is worth the monster changing direction. (If the monster changes direction in this right-angle case, the lady changes too but now starts closer to shore.) As they are both trying to get to the point $\left(\frac{r}{k},r \sqrt{1-\frac{1}{k^2}}\right)$ then they will arrive at the same time if $ \pi + \cos^{-1}(1/k) = k \sqrt{1 -1/k^2}$ which by numerical methods gives $k \approx 4.6033$.

So if the monster is less than 4.6033 times as fast as the lady, the lady can escape; if not then she stays in the lake and the monster stays on the edge and they live unhappily ever after.


edit: I corrected a silly mistake, now I get the same answer as Henry.

Let $k=v_m/v_l$. We can suppose $v_l=1$, hence $v_m=k$, and that the radius of the lake is 1. Let's reformulate the problem in this way: lady swims as before, but monster stands still and turns the lake with speed $\leq k$. The (vector) speed of the lady is a point in a disc of radius $1$, and the monster can control the center of the disc - he can move it from $0$ in the tangent direction by at most $kr$, where $r$ is the distance of the lady from the center.

If $r<1/k$ then $0$ is inside the disc, so the monster has no control over the direction of lady's movement. She can therefore get to $r=1/k$ to the point away from monster.

When $r>1/k$ then $0$ is no longer in the disc and the monster can force (by turning at full speed) the constraint $|dr/d\phi|\leq r/\sqrt{k^2r^2-1}$ (where $\phi$ is the angle of the position of the lady). The question is whether she can get from $r=1/k$, $\phi=0$, to $r=1$, $\phi<\pi$ ($r=1$, $\phi=\pi$ is the position of monster). This is possible iff $\int_{1/k}^1 \sqrt{k^2-r^{-2}}\, dr <\pi$.

edit: Here is why $|dr/d\phi|\leq r/\sqrt{k^2r^2-1}$ (it's a bit difficult to explain without a picture, but I'll try). The possible speeds of the lady form a disc with the center at $(0,kr)$ and with the radius $1$. The speed with the largest slope is the point of tangency from $0$ to the circle. Its slope can be seen from the right-angled triangle, with hypotenuse $kr$ and two other sides $1$ and $\sqrt{(kr)^2-1}$ - so the slope is $1/\sqrt{(kr)^2-1}$.


I don't see that there is any game theory to be done here.

For the lady to have a winning strategy means that there exists a legal lady path $\gamma_l$, which reaches the shore, such that for all legal monster paths $\gamma_m$, a monster following path $\gamma_m$ does not catch the lady.

For any choice of $v_l$ and $v_m$, either the lady has a winning strategy or she doesn't, and it sounds like you know how to find out which is which. If she doesn't, then inverting the quantifiers, for every legal lady path which reaches the shore there exists a monster path which catches it. So in this case she cannot reach the shore without being caught.

However, the lady can always force a draw by not reaching the shore.