A novelty integral for $\pi$

The integrand can be broken up as $$I=\int_0^{\infty} \left(\frac{2 \ln(1+x)\ln\left(\frac{1+x}{2}\right)}{x^{3/2} \ln^2 x} +\frac{\ln(1+x)\ln\left(\frac{1+x}{2}\right)}{x^{3/2} \ln x}-\frac{2\ln(1+x)}{x^{1/2} (1+x) \ln x}\right)dx.$$

But, by integration by parts, $$\int \frac{2\ln(1+x)}{x^{1/2} (1+x) \ln x} dx= \int \frac{2\ln(1+x)}{x^{1/2} \ln x} d\left(\ln\left(\frac{1+x}{2}\right)\right) \\=\small\frac{2 \ln(1+x)\ln\left(\frac{1+x}{2}\right)}{x^{1/2} \ln x}-2\int \left( \frac{\ln\left(\frac{1+x}{2}\right)}{x^{1/2} (1+x) \ln x}-\frac{ \ln(1+x)\ln\left(\frac{1+x}{2}\right)}{x^{3/2} \ln^2 x}-\frac{\ln(1+x)\ln\left(\frac{1+x}{2}\right)}{2 x^{3/2} \ln x}\right)dx$$

That is, $$\int \left(\frac{2 \ln(1+x)\ln\left(\frac{1+x}{2}\right)}{x^{3/2} \ln^2 x} +\frac{\ln(1+x)\ln\left(\frac{1+x}{2}\right)}{x^{3/2} \ln x}-\frac{2\ln(1+x)}{x^{1/2} (1+x) \ln x}\right)dx \\= -\frac{2 \ln(1+x)\ln\left(\frac{1+x}{2}\right)}{x^{1/2} \ln x}+2 \int \frac{\ln\left(\frac{1+x}{2}\right)}{x^{1/2} (1+x) \ln x} dx$$

And the claim follows from Jack D'Aurizio's preliminary result.


A preliminary result.

$$I_1=\int_{0}^{+\infty}\frac{2\log\left(\frac{1+x}{2}\right)}{\sqrt{x}(1+x)\log(x)}=\color{red}{\pi}.\tag{1}$$

Proof: through the substitution $x=e^t$, $$\begin{eqnarray*}I_1=\int_{-\infty}^{+\infty}\frac{\log\left(\frac{e^t+1}{2}\right)}{\cosh\left(\frac{t}{2}\right)t}\,dt&=&\color{red}{\frac{1}{2}\int_{-\infty}^{+\infty}\frac{dt}{\cosh\left(\frac{t}{2}\right)}}+\color{blue}{\int_{-\infty}^{+\infty}\frac{\log\cosh\left(\frac{t}{2}\right)}{t\cosh\left(\frac{t}{2}\right)}\,dt}\end{eqnarray*}$$ where the red integral is easy to compute and the blue one vanishes by symmetry.


Thanks to nospoon, this is ultimately everything we need to prove the OP's identity through integration by parts.