A pattern in determinants of Fibonacci numbers?
Here's a hint: what's the relationship between $F_{k+1}+F_{k+2}$ and $F_{k+3}$? What does that say about the 1st, 2nd, and 3rd columns of this matrix?
The resolution is remarkably simple (many thanks to obscurans' answer for the hint!) By the definition of the Fibonacci numbers, $F_k+F_{k+1}=F_{k+2}$ for all $k$. If $n\geq3$ then these numbers are going to be in the first three columns of every row. Hence the first three rows are linearly dependent, so the determinant is $0$. It follows from this that any such sequence following a linear recurrence (of the form $F_{n}=aF_{n-1}+bF_{n-2}$, $a,b$ are constant), with possibly different starting terms, also satisfies the stated conjecture. In fact, this shows that all such matrices have rank $2$, with the only two linearly independent columns being the first two. If the linear recurrence is of higher order, say $m$, then the determinant is $0$ when $n>m$, and the rank of the matrix will be $m$.