Absolute value graph sketching: $||x-1|-1|$
1) $y=|x|$
2) $y=|x-1|$
3) $y=|x-1|-1$
4) $y=||x-1|-1|$
If you know the graph of $f(x)$, then the graph of $|f(x)|$ is just the result of “folding” $f$ about to the $x$ axis. Hence, plotting $f(x) = \bigl\lvert \lvert x - 1 \rvert - 1 \bigr\rvert$ goes like this.
Plot $y = x - 1$ and fold the portion of it that lies below the $x$ axis over the $x$ axis. The result is the graph of $\lvert x - 1 \rvert$.
Then shift this graph downward by $1$ and do the same folding again. Then you will get $\bigl\lvert \lvert x - 1 \rvert - 1 \bigr\rvert$.
Start by drawing $y = |x|$. Now move it right one and you get the graph of $y = |x - 1|$. Next yank it down one and get the graph of $y = |x-1|-1$. Finally, reflect up the stuff below the $x$-axis and you are done.