Accessing first column of pandas value_counts
value_counts
returns a Pandas Series:
df = pd.DataFrame(np.random.choice(list("abc"), size=10), columns = ["X"])
df["X"].value_counts()
Out[243]:
c 4
b 3
a 3
Name: X, dtype: int64
For the array of individual values, you can use the index of the Series:
vl_list = df["X"].value_counts().index
Index(['c', 'b', 'a'], dtype='object')
It is of type "Index" but you can iterate over it:
for idx in vl_list:
print(idx)
c
b
a
Or for the numpy array, you can use df["X"].value_counts().index.values
You can access the first column by using .keys()
or index
as below:
df.column_name.value_counts().keys()
df.column_name.value_counts().index
Use Panda's iteritems()
:
df = pd.DataFrame({'mycolumn': [1,2,2,2,3,3,4]})
for val, cnt in df.mycolumn.value_counts().iteritems():
print 'value', val, 'was found', cnt, 'times'
value 2 was found 3 times
value 3 was found 2 times
value 4 was found 1 times
value 1 was found 1 times