Add an empty column to Spark DataFrame
The option without import StringType
df = df.withColumn('foo', F.lit(None).cast('string'))
Full example:
from pyspark.sql import functions as F
df = spark.range(1, 3).toDF('c')
df = df.withColumn('foo', F.lit(None).cast('string'))
df.printSchema()
# root
# |-- c: long (nullable = false)
# |-- foo: string (nullable = true)
df.show()
# +---+----+
# | c| foo|
# +---+----+
# | 1|null|
# | 2|null|
# +---+----+
All you need here is importing StringType
and using lit
and cast
:
from pyspark.sql.types import StringType
from pyspark.sql.functions import lit
new_df = old_df.withColumn('new_column', lit(None).cast(StringType()))
A full example:
df = sc.parallelize([row(1, "2"), row(2, "3")]).toDF()
df.printSchema()
# root
# |-- foo: long (nullable = true)
# |-- bar: string (nullable = true)
new_df = df.withColumn('new_column', lit(None).cast(StringType()))
new_df.printSchema()
# root
# |-- foo: long (nullable = true)
# |-- bar: string (nullable = true)
# |-- new_column: string (nullable = true)
new_df.show()
# +---+---+----------+
# |foo|bar|new_column|
# +---+---+----------+
# | 1| 2| null|
# | 2| 3| null|
# +---+---+----------+
A Scala equivalent can be found here: Create new Dataframe with empty/null field values
I would cast lit(None) to NullType instead of StringType. So that if we ever have to filter out not null rows on that column...it can be easily done as follows
df = sc.parallelize([Row(1, "2"), Row(2, "3")]).toDF()
new_df = df.withColumn('new_column', lit(None).cast(NullType()))
new_df.printSchema()
df_null = new_df.filter(col("new_column").isNull()).show()
df_non_null = new_df.filter(col("new_column").isNotNull()).show()
Also be careful about not using lit("None")(with quotes) if you are casting to StringType since it would fail for searching for records with filter condition .isNull() on col("new_column").