Adjusting gridlines and ticks in matplotlib imshow

One can find it easier to use plt.pcolor or plt.pcolormesh:

data = np.random.rand(10, 10)
plt.pcolormesh(data, edgecolors='k', linewidth=2)
ax = plt.gca()
ax.set_aspect('equal')

enter image description here

Though, there are some differences among them and plt.imshow, the most obvious being that the image is swapped by the Y-axis (you can reversed it back easily by adding ax.invert_yaxis() though). For further discussion see here: When to use imshow over pcolormesh?


Code for solution as suggested by Serenity:

plt.figure()
im = plt.imshow(np.reshape(np.random.rand(100), newshape=(10,10)),
                interpolation='none', vmin=0, vmax=1, aspect='equal')

ax = plt.gca();

# Major ticks
ax.set_xticks(np.arange(0, 10, 1))
ax.set_yticks(np.arange(0, 10, 1))

# Labels for major ticks
ax.set_xticklabels(np.arange(1, 11, 1))
ax.set_yticklabels(np.arange(1, 11, 1))

# Minor ticks
ax.set_xticks(np.arange(-.5, 10, 1), minor=True)
ax.set_yticks(np.arange(-.5, 10, 1), minor=True)

# Gridlines based on minor ticks
ax.grid(which='minor', color='w', linestyle='-', linewidth=2)

Resulting image: enter image description here


Try to shift axes ticks:

ax = plt.gca()
ax.set_xticks(np.arange(-.5, 10, 1))
ax.set_yticks(np.arange(-.5, 10, 1))
ax.set_xticklabels(np.arange(1, 12, 1))
ax.set_yticklabels(np.arange(1, 12, 1))

enter image description here