Adjusting the space between the caption below a figure
If I've well understood what you want, this is easy with the \ffigbox
command from floatrow
, which gives full control on the caption width:
\documentclass[11pt, a4paper]{report}
\usepackage{bm}
\usepackage{graphicx, verbatim, amsmath,amssymb, amsthm}
\usepackage{color}
\usepackage{array}
\usepackage{setspace}% if you must (for double spacing thesis)
\usepackage{fancyhdr}
\usepackage{enumitem}
\usepackage{tikz}
\usepackage{parskip}
\usepackage{lipsum}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{example}[theorem]{Example}
\usepackage{floatrow}
\begin{document}
\begin{example}
Consider a random walk on the $n$-cycle. Let $\Omega = \mathbb{Z}_n = \lbrace 0, 1, 2, \cdots, n-1 \rbrace$ be the set of remainders modulo $n$. Also consider the transition matrix:
\[
P(x,y) =
\begin{cases}
\frac{1}{2} & \text{if } y=x+1 \pmod n\\
\frac{1}{2} & \text{if } y=x-1\pmod n\\
0 & \text{otherwise}
\end{cases}
\]
The associated Markov chain $X_t$ is called a random walk on the $n$-cycle. The states can be visualised as equally spaced nodes arranged in a circle(see figure 1.1)
\end{example}
\begin{figure}[htbp]
\centering
\ffigbox[1.1\FBwidth]{%
\caption{Random walk on $\mathbb{Z}_10$ is periodic, since every step
goes from an even state to an odd state, or vice-versa. Random
walk on $\mathbb{Z}_9$ is aperiodic.}
\label{my:figure}}%
{\begin{tikzpicture}
\foreach \i in {90,54,...,-234} {
\draw[ultra thick] (\i:2)--({\i-36}:2);
}
\foreach \i in {90,18,...,-198} {
\draw[fill=black] (\i:2) circle (1.25mm);
}
\foreach \i in {54,-18,...,-234} {
\draw[fill=white] (\i:2) circle (1.25mm);
}
\begin{scope}[xshift=5cm]
\foreach \i in {90,50,...,-230} {
\draw[ultra thick] (\i:2)--({\i-40}:2);
\draw[fill=black] (\i:2) circle (1.25mm);
}
\end{scope}
\end{tikzpicture}}%
\end{figure}
\end{document}
If I understand you right, you can use the following two lines in your preamble
\usepackage{caption} % <================================================
\captionsetup{width=0.8\textwidth} % <==================================
to let the caption use only 80% of textwidth. See the documentation of package caption
for more possibilitys to manipulate the layout of captions with typing texdoc caption
on ypur console/terminal.
The complete code
\documentclass[11pt, a4paper]{report}
\usepackage{bm}
\usepackage{amsfonts, graphicx, verbatim, amsmath,amssymb, amsthm}
\usepackage{color}
\usepackage{array}
\usepackage{setspace}% if you must (for double spacing thesis)
\usepackage{fancyhdr}
\usepackage{enumitem}
\usepackage{tikz}
\usepackage{parskip}
\usepackage{lipsum}
\usepackage{caption} % <================================================
\captionsetup{width=0.8\textwidth} % <==================================
\newtheorem{theorem}{Theorem}[section]
\newtheorem{example}[theorem]{Example}
\begin{document}
\begin{example}
Consider a random walk on the $n$-cycle.
Let $\Omega = \mathbb{Z}_n = \lbrace 0, 1, 2, \cdots, n-1 \rbrace$ be
the set of remainders modulo $n$. Also consider the transition matrix:
\[
P(x,y) =
\begin{cases}
\frac{1}{2} & \text{if } y=x+1\;\; (mod\;n)\\
\frac{1}{2} & \text{if } y=x-1\;\; (mod\;n)\\
0 & \text{otherwise}
\end{cases}
\]
The associated Markov chain $X_t$ is called a random walk on the
$n$-cycle. The sates can be visualised as equally spaced nodes arranged
in a circle (see figure~\ref{my:figure}). % <==========================
\end{example}
\begin{figure}[htbp]
\centering
\begin{tikzpicture}
\foreach \i in {90,54,...,-234} {
\draw[ultra thick] (\i:2)--({\i-36}:2);
}
\foreach \i in {90,18,...,-198} {
\draw[fill=black] (\i:2) circle (1.25mm);
}
\foreach \i in {54,-18,...,-234} {
\draw[fill=white] (\i:2) circle (1.25mm);
}
\begin{scope}[xshift=5cm]
\foreach \i in {90,50,...,-230} {
\draw[ultra thick] (\i:2)--({\i-40}:2);
\draw[fill=black] (\i:2) circle (1.25mm);
}
\end{scope}
\end{tikzpicture}
\caption{Random walk on $\mathbb{Z}_10$ is periodic, since every step
goes from an even state to an odd state, or vice-versa. Random
walk on $\mathbb{Z}_9$ is aperiodic.}
\label{my:figure}
\end{figure}
Text after the figure.
\end{document}
gives you the result:
EDIT:
With your second example (after commenting \ffigbox
, see markings <======
in code)
\documentclass[11pt, a4paper]{report}
\usepackage{bm}
\usepackage{amsfonts, graphicx, verbatim, amsmath,amssymb, amsthm}
\usepackage{color}
\usepackage{array}
\usepackage{setspace}% if you must (for double spacing thesis)
\usepackage{fancyhdr}
\usepackage{enumitem}
\usepackage{tikz}
\usepackage{parskip}
\usepackage{lipsum}
\usepackage{floatrow}
\usepackage{caption} % <================================================
\captionsetup{width=0.8\textwidth} % <==================================
\newtheorem{theorem}{Theorem}[section]
\newtheorem{example}[theorem]{Example}
\begin{document}
\begin{example}
Consider a random walk on the $n$-cycle.
Let $\Omega = \mathbb{Z}_n = \lbrace 0, 1, 2, \cdots, n-1 \rbrace$ be
the set of remainders modulo $n$. Also consider the transition matrix:
\[
P(x,y) =
\begin{cases}
\frac{1}{2} & \text{if } y=x+1\;\; (mod\;n)\\
\frac{1}{2} & \text{if } y=x-1\;\; (mod\;n)\\
0 & \text{otherwise}
\end{cases}
\]
The associated Markov chain $X_t$ is called a random walk on the
$n$-cycle. The sates can be visualised as equally spaced nodes arranged
in a circle (see figure~\ref{my:figure}).
\end{example}
\begin{figure}[htbp]
\centering
\begin{tikzpicture}
\foreach \i in {90,54,...,-234} {
\draw[ultra thick] (\i:2)--({\i-36}:2);
}
\foreach \i in {90,18,...,-198} {
\draw[fill=black] (\i:2) circle (1.25mm);
}
\foreach \i in {54,-18,...,-234} {
\draw[fill=white] (\i:2) circle (1.25mm);
}
\begin{scope}[xshift=5cm]
\foreach \i in {90,50,...,-230} {
\draw[ultra thick] (\i:2)--({\i-40}:2);
\draw[fill=black] (\i:2) circle (1.25mm);
}
\end{scope}
\end{tikzpicture}
\caption{Random walk on $\mathbb{Z}_10$ is periodic, since every step
goes from an even state to an odd state, or vice-versa. Random
walk on $\mathbb{Z}_9$ is aperiodic.}
\label{my:figure}
\end{figure}
Text after the figure.
\clearpage
\begin{example} Consider the graph $G$ following shown in figure 1.2. The transition matrix of a simple random walk $G$ is
\begin{equation*}
P =
\begin{bmatrix}[1.25]
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
\frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{4} & 0 \\
\frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
0 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 & \frac{1}{4} \\
0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 \\
\end{bmatrix}
\end{equation*}
\begin{figure}[htbp]
\centering
%\ffigbox[1.1\FBwidth]{% <==============================================
\caption{An example of a vertex set $V = \lbrace 1, 2, 3, 4, 5, 6\rbrace$ with $10$ edges.}
\label{my:figure}%
%}% <===================================================================
{\begin{tikzpicture}[bn/.style={circle,fill,draw,text=white,font=\sffamily,minimum
size=1mm},every node/.append style={bn}]
\path node (1) {1} -- ++ (50:2.5) node (2) {2} -- ++(-95:1.75) node (3) {3}
-- ++(-85:1.75) node (4) {4} -- ++(40:2.75) node (5) {5}
-- ++ (0,1.75) node (6) {6} ;
\draw[thick] (1)--(2)--(6)--(5)--(4)--(1)--(3)--(5)--(2)--(3)--(4);
\end{tikzpicture}}%
\end{figure}
\end{example}
\end{document}
you get the resulting second figure/page: