Aggregate / summarize multiple variables per group (e.g. sum, mean)

Using the data.table package, which is fast (useful for larger datasets)

https://github.com/Rdatatable/data.table/wiki

library(data.table)
df2 <- setDT(df1)[, lapply(.SD, sum), by=.(year, month), .SDcols=c("x1","x2")]
setDF(df2) # convert back to dataframe

Using the plyr package

require(plyr)
df2 <- ddply(df1, c("year", "month"), function(x) colSums(x[c("x1", "x2")]))

Using summarize() from the Hmisc package (column headings are messy in my example though)

# need to detach plyr because plyr and Hmisc both have a summarize()
detach(package:plyr)
require(Hmisc)
df2 <- with(df1, summarize( cbind(x1, x2), by=llist(year, month), FUN=colSums))

Yes, in your formula, you can cbind the numeric variables to be aggregated:

aggregate(cbind(x1, x2) ~ year + month, data = df1, sum, na.rm = TRUE)
   year month         x1          x2
1  2000     1   7.862002   -7.469298
2  2001     1 276.758209  474.384252
3  2000     2  13.122369 -128.122613
...
23 2000    12  63.436507  449.794454
24 2001    12 999.472226  922.726589

See ?aggregate, the formula argument and the examples.


Where is this year() function from?

You could also use the reshape2 package for this task:

require(reshape2)
df_melt <- melt(df1, id = c("date", "year", "month"))
dcast(df_melt, year + month ~ variable, sum)
#  year month         x1           x2
1  2000     1  -80.83405 -224.9540159
2  2000     2 -223.76331 -288.2418017
3  2000     3 -188.83930 -481.5601913
4  2000     4 -197.47797 -473.7137420
5  2000     5 -259.07928 -372.4563522

With the dplyr package, you can use summarise_all, summarise_at or summarise_if functions to aggregate multiple variables simultaneously. For the example dataset you can do this as follows:

library(dplyr)
# summarising all non-grouping variables
df2 <- df1 %>% group_by(year, month) %>% summarise_all(sum)

# summarising a specific set of non-grouping variables
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(x1, x2), sum)
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(-date), sum)

# summarising a specific set of non-grouping variables using select_helpers
# see ?select_helpers for more options
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(starts_with('x')), sum)
df2 <- df1 %>% group_by(year, month) %>% summarise_at(vars(matches('.*[0-9]')), sum)

# summarising a specific set of non-grouping variables based on condition (class)
df2 <- df1 %>% group_by(year, month) %>% summarise_if(is.numeric, sum)

The result of the latter two options:

    year month        x1         x2
   <dbl> <dbl>     <dbl>      <dbl>
1   2000     1 -73.58134  -92.78595
2   2000     2 -57.81334 -152.36983
3   2000     3 122.68758  153.55243
4   2000     4 450.24980  285.56374
5   2000     5 678.37867  384.42888
6   2000     6 792.68696  530.28694
7   2000     7 908.58795  452.31222
8   2000     8 710.69928  719.35225
9   2000     9 725.06079  914.93687
10  2000    10 770.60304  863.39337
# ... with 14 more rows

Note: summarise_each is deprecated in favor of summarise_all, summarise_at and summarise_if.


As mentioned in my comment above, you can also use the recast function from the reshape2-package:

library(reshape2)
recast(df1, year + month ~ variable, sum, id.var = c("date", "year", "month"))

which will give you the same result.