Algorithm for finding the maximum difference in an array of numbers
This is a good application of a min-queue - a queue (First-In, First-Out = FIFO) which can simultaneously keep track of the minimum element it contains, with amortized constant-time updates. Of course, a max-queue is basically the same thing.
Once you have this data structure in place, you can consider CurrentMax (of the past 1000 elements) minus CurrentMin, store that as the BestSoFar, and then push a new value and pop the old value, and check again. In this way, keep updating BestSoFar until the final value is the solution to your question. Each single step takes amortized constant time, so the whole thing is linear, and the implementation I know of has a good scalar constant (it's fast).
I don't know of any documentation on min-queue's - this is a data structure I came up with in collaboration with a coworker. You can implement it by internally tracking a binary tree of the least elements within each contiguous sub-sequence of your data. It simplifies the problem that you'll only pop data from one end of the structure.
If you're interested in more details, I can try to provide them. I was thinking of writing this data structure up as a paper for arxiv. Also note that Tarjan and others previously arrived at a more powerful min-deque structure that would work here, but the implementation is much more complex. You can google for "mindeque" to read about Tarjan et al.'s work.
This type of question belongs to a branch of algorithms called streaming algorithms. It is the study of problems which require not only an O(n) solution but also need to work in a single pass over the data. the data is inputted as a stream to the algorithm, the algorithm can't save all of the data and then and then it is lost forever. the algorithm needs to get some answer about the data, such as for instance the minimum or the median.
Specifically you are looking for a maximum (or more commonly in literature - minimum) in a window over a stream.
Here's a presentation on an article that mentions this problem as a sub problem of what they are trying to get at. it might give you some ideas.
I think the outline of the solution is something like that - maintain the window over the stream where in each step one element is inserted to the window and one is removed from the other side (a sliding window). The items you actually keep in memory aren't all of the 1000 items in the window but a selected representatives which are going to be good candidates for being the minimum (or maximum).
read the article. it's abit complex but after 2-3 reads you can get the hang of it.
The algorithm you describe is really O(N), but i think the constant is too high. Another solution which looks reasonable is to use O(N*log(N)) algorithm the following way:
* create sorted container (std::multiset) of first 1000 numbers
* in loop (j=1, j<(3600000-1000); ++j)
- calculate range
- remove from the set number which is now irrelevant (i.e. in index *j - 1* of the array)
- add to set new relevant number (i.e. in index *j+1000-1* of the array)
I believe it should be faster, because the constant is much lower.