Algorithm to convert RGB to HSV and HSV to RGB in range 0-255 for both

I've used these for a long time - no idea where they came from at this point... Note that the inputs and outputs, except for the angle in degrees, are in the range of 0 to 1.0.

NOTE: this code does no real sanity checking on inputs. Proceed with caution!

typedef struct {
    double r;       // a fraction between 0 and 1
    double g;       // a fraction between 0 and 1
    double b;       // a fraction between 0 and 1
} rgb;

typedef struct {
    double h;       // angle in degrees
    double s;       // a fraction between 0 and 1
    double v;       // a fraction between 0 and 1
} hsv;

static hsv   rgb2hsv(rgb in);
static rgb   hsv2rgb(hsv in);

hsv rgb2hsv(rgb in)
{
    hsv         out;
    double      min, max, delta;

    min = in.r < in.g ? in.r : in.g;
    min = min  < in.b ? min  : in.b;

    max = in.r > in.g ? in.r : in.g;
    max = max  > in.b ? max  : in.b;

    out.v = max;                                // v
    delta = max - min;
    if (delta < 0.00001)
    {
        out.s = 0;
        out.h = 0; // undefined, maybe nan?
        return out;
    }
    if( max > 0.0 ) { // NOTE: if Max is == 0, this divide would cause a crash
        out.s = (delta / max);                  // s
    } else {
        // if max is 0, then r = g = b = 0              
        // s = 0, h is undefined
        out.s = 0.0;
        out.h = NAN;                            // its now undefined
        return out;
    }
    if( in.r >= max )                           // > is bogus, just keeps compilor happy
        out.h = ( in.g - in.b ) / delta;        // between yellow & magenta
    else
    if( in.g >= max )
        out.h = 2.0 + ( in.b - in.r ) / delta;  // between cyan & yellow
    else
        out.h = 4.0 + ( in.r - in.g ) / delta;  // between magenta & cyan

    out.h *= 60.0;                              // degrees

    if( out.h < 0.0 )
        out.h += 360.0;

    return out;
}


rgb hsv2rgb(hsv in)
{
    double      hh, p, q, t, ff;
    long        i;
    rgb         out;

    if(in.s <= 0.0) {       // < is bogus, just shuts up warnings
        out.r = in.v;
        out.g = in.v;
        out.b = in.v;
        return out;
    }
    hh = in.h;
    if(hh >= 360.0) hh = 0.0;
    hh /= 60.0;
    i = (long)hh;
    ff = hh - i;
    p = in.v * (1.0 - in.s);
    q = in.v * (1.0 - (in.s * ff));
    t = in.v * (1.0 - (in.s * (1.0 - ff)));

    switch(i) {
    case 0:
        out.r = in.v;
        out.g = t;
        out.b = p;
        break;
    case 1:
        out.r = q;
        out.g = in.v;
        out.b = p;
        break;
    case 2:
        out.r = p;
        out.g = in.v;
        out.b = t;
        break;

    case 3:
        out.r = p;
        out.g = q;
        out.b = in.v;
        break;
    case 4:
        out.r = t;
        out.g = p;
        out.b = in.v;
        break;
    case 5:
    default:
        out.r = in.v;
        out.g = p;
        out.b = q;
        break;
    }
    return out;     
}

I wrote this in HLSL for our rendering engine, it has no conditions in it:

    float3  HSV2RGB( float3 _HSV )
    {
        _HSV.x = fmod( 100.0 + _HSV.x, 1.0 );                                       // Ensure [0,1[

        float   HueSlice = 6.0 * _HSV.x;                                            // In [0,6[
        float   HueSliceInteger = floor( HueSlice );
        float   HueSliceInterpolant = HueSlice - HueSliceInteger;                   // In [0,1[ for each hue slice

        float3  TempRGB = float3(   _HSV.z * (1.0 - _HSV.y),
                                    _HSV.z * (1.0 - _HSV.y * HueSliceInterpolant),
                                    _HSV.z * (1.0 - _HSV.y * (1.0 - HueSliceInterpolant)) );

        // The idea here to avoid conditions is to notice that the conversion code can be rewritten:
        //    if      ( var_i == 0 ) { R = V         ; G = TempRGB.z ; B = TempRGB.x }
        //    else if ( var_i == 2 ) { R = TempRGB.x ; G = V         ; B = TempRGB.z }
        //    else if ( var_i == 4 ) { R = TempRGB.z ; G = TempRGB.x ; B = V     }
        // 
        //    else if ( var_i == 1 ) { R = TempRGB.y ; G = V         ; B = TempRGB.x }
        //    else if ( var_i == 3 ) { R = TempRGB.x ; G = TempRGB.y ; B = V     }
        //    else if ( var_i == 5 ) { R = V         ; G = TempRGB.x ; B = TempRGB.y }
        //
        // This shows several things:
        //  . A separation between even and odd slices
        //  . If slices (0,2,4) and (1,3,5) can be rewritten as basically being slices (0,1,2) then
        //      the operation simply amounts to performing a "rotate right" on the RGB components
        //  . The base value to rotate is either (V, B, R) for even slices or (G, V, R) for odd slices
        //
        float   IsOddSlice = fmod( HueSliceInteger, 2.0 );                          // 0 if even (slices 0, 2, 4), 1 if odd (slices 1, 3, 5)
        float   ThreeSliceSelector = 0.5 * (HueSliceInteger - IsOddSlice);          // (0, 1, 2) corresponding to slices (0, 2, 4) and (1, 3, 5)

        float3  ScrollingRGBForEvenSlices = float3( _HSV.z, TempRGB.zx );           // (V, Temp Blue, Temp Red) for even slices (0, 2, 4)
        float3  ScrollingRGBForOddSlices = float3( TempRGB.y, _HSV.z, TempRGB.x );  // (Temp Green, V, Temp Red) for odd slices (1, 3, 5)
        float3  ScrollingRGB = lerp( ScrollingRGBForEvenSlices, ScrollingRGBForOddSlices, IsOddSlice );

        float   IsNotFirstSlice = saturate( ThreeSliceSelector );                   // 1 if NOT the first slice (true for slices 1 and 2)
        float   IsNotSecondSlice = saturate( ThreeSliceSelector-1.0 );              // 1 if NOT the first or second slice (true only for slice 2)

        return  lerp( ScrollingRGB.xyz, lerp( ScrollingRGB.zxy, ScrollingRGB.yzx, IsNotSecondSlice ), IsNotFirstSlice );    // Make the RGB rotate right depending on final slice index
    }

You can also try this code without floats (faster but less accurate):

typedef struct RgbColor
{
    unsigned char r;
    unsigned char g;
    unsigned char b;
} RgbColor;

typedef struct HsvColor
{
    unsigned char h;
    unsigned char s;
    unsigned char v;
} HsvColor;

RgbColor HsvToRgb(HsvColor hsv)
{
    RgbColor rgb;
    unsigned char region, remainder, p, q, t;

    if (hsv.s == 0)
    {
        rgb.r = hsv.v;
        rgb.g = hsv.v;
        rgb.b = hsv.v;
        return rgb;
    }

    region = hsv.h / 43;
    remainder = (hsv.h - (region * 43)) * 6; 

    p = (hsv.v * (255 - hsv.s)) >> 8;
    q = (hsv.v * (255 - ((hsv.s * remainder) >> 8))) >> 8;
    t = (hsv.v * (255 - ((hsv.s * (255 - remainder)) >> 8))) >> 8;

    switch (region)
    {
        case 0:
            rgb.r = hsv.v; rgb.g = t; rgb.b = p;
            break;
        case 1:
            rgb.r = q; rgb.g = hsv.v; rgb.b = p;
            break;
        case 2:
            rgb.r = p; rgb.g = hsv.v; rgb.b = t;
            break;
        case 3:
            rgb.r = p; rgb.g = q; rgb.b = hsv.v;
            break;
        case 4:
            rgb.r = t; rgb.g = p; rgb.b = hsv.v;
            break;
        default:
            rgb.r = hsv.v; rgb.g = p; rgb.b = q;
            break;
    }

    return rgb;
}

HsvColor RgbToHsv(RgbColor rgb)
{
    HsvColor hsv;
    unsigned char rgbMin, rgbMax;

    rgbMin = rgb.r < rgb.g ? (rgb.r < rgb.b ? rgb.r : rgb.b) : (rgb.g < rgb.b ? rgb.g : rgb.b);
    rgbMax = rgb.r > rgb.g ? (rgb.r > rgb.b ? rgb.r : rgb.b) : (rgb.g > rgb.b ? rgb.g : rgb.b);

    hsv.v = rgbMax;
    if (hsv.v == 0)
    {
        hsv.h = 0;
        hsv.s = 0;
        return hsv;
    }

    hsv.s = 255 * long(rgbMax - rgbMin) / hsv.v;
    if (hsv.s == 0)
    {
        hsv.h = 0;
        return hsv;
    }

    if (rgbMax == rgb.r)
        hsv.h = 0 + 43 * (rgb.g - rgb.b) / (rgbMax - rgbMin);
    else if (rgbMax == rgb.g)
        hsv.h = 85 + 43 * (rgb.b - rgb.r) / (rgbMax - rgbMin);
    else
        hsv.h = 171 + 43 * (rgb.r - rgb.g) / (rgbMax - rgbMin);

    return hsv;
}

Note that this algorithm uses 0-255 as it's range (not 0-360) as that was requested by the author of this question.

Tags:

Algorithm

C++

C