Align objective function in latex
I think it's really a single line equation so I'd use equation not align, and then use aligned
to wrap the subterm.
\documentclass{article}
\usepackage[cmex10]{amsmath}
\DeclareMathOperator*{\Min}{min}
\begin{document}
\begin{equation}
Q_t(v_{t-1},a_{ti\omega}) =
\min_{
\substack{g_t,~y_t,f_t,~\theta_t,~\\\Delta u^{up},~\Delta u^{dn},\\
\Delta g^{up},~\Delta g^{dn},\\g_t^c,~y_t^c,~f_t^c,~\theta_t^c}}
c^\top_{t}g_{t,i}+{}
\begin{aligned}[t]
& \sum_{i \in \mathcal{I}^T}(c^{U}_i \Delta g^{up}_{t,i}+c^{D}_i \Delta g^{dn}_{t,i})+\\
&\sum_{i \in \mathcal{I}^H}(c^{U}_i \Delta u^{up}_{t,i}+c^{D}_i \Delta u^{dn}_{t,i})+\mathcal{Q}_{t+1}(v_t)
\end{aligned}
\end{equation}
\end{document}
And one more solution :-), based on use of multlined
environment from package mathtools
:
\documentclass{article}
\usepackage[cmex10]{mathtools}
\usepackage[active,tightpage]{preview}
\PreviewEnvironment{align}
\setlength\PreviewBorder{1em}
\begin{document}
\begin{align}
Q_t(v_{t-1},a_{ti\omega}) = \notag \\
\min_{\substack{g_t,~y_t,f_t,~\theta_t,~\\
\Delta u^{up},~\Delta u^{dn},\\
\Delta g^{up},~\Delta g^{dn},\\
g_t^c,~y_t^c,~f_t^c,~\theta_t^c}}
& \begin{multlined}[t][75mm]
c^\top_{t}g_{t,i} +
\sum_{i \in \mathcal{I}^T}(c^{U}_i
\Delta g^{up}_{t,i}+c^{D}_i \Delta g^{dn}_{t,i}) + \\
\sum_{i \in \mathcal{I}^H}(c^{U}_i
\Delta u^{up}_{t,i}+c^{D}_i \Delta u^{dn}_{t,i})+\mathcal{Q}_{t+1}(v_t)
\end{multlined}
\end{align}
\end{document}
Edit: I just discover stupid error in my code .. the position of \notag
is on wrong side of \\
. Now this is corrected and numbering of equation is consequently improved.
I'd use the multline
environment instead of align
. To reduce the spacing due to the long \substack
, use \smash[b]
.
MWE
\documentclass{article}
\usepackage[cmex10]{amsmath}
\DeclareMathOperator*{\Min}{min}
\begin{document}
\begin{multline}
Q_t(v_{t-1},a_{ti\omega}) =
\min_{\smash[b]{\substack{g_t,~y_t,f_t,~\theta_t,~\\\Delta u^{up},~\Delta u^{dn},\\\Delta g^{up},~\Delta g^{dn},\\g_t^c,~y_t^c,~f_t^c,~\theta_t^c}}} c^\top_{t}g_{t,i}+\sum_{i \in \mathcal{I}^T}(c^{U}_i \Delta g^{up}_{t,i}+c^{D}_i \Delta g^{dn}_{t,i})+ \\
\hspace{19mm}\sum_{i \in \mathcal{I}^H}(c^{U}_i \Delta u^{up}_{t,i}+c^{D}_i \Delta u^{dn}_{t,i})+\mathcal{Q}_{t+1}(v_t)
\end{multline}
\end{document}