Animating canvas to look like tv noise
I tried to make a similar function a while ago. I set each pixel random value, and in addition to that, I overlayed a sinusodial wave that traveled upwards with time just to make it look more realistic. You can play with the constants in the wave to get different effects.
var canvas = null;
var context = null;
var time = 0;
var intervalId = 0;
var makeNoise = function() {
var imgd = context.createImageData(canvas.width, canvas.height);
var pix = imgd.data;
for (var i = 0, n = pix.length; i < n; i += 4) {
var c = 7 + Math.sin(i/50000 + time/7); // A sine wave of the form sin(ax + bt)
pix[i] = pix[i+1] = pix[i+2] = 40 * Math.random() * c; // Set a random gray
pix[i+3] = 255; // 100% opaque
}
context.putImageData(imgd, 0, 0);
time = (time + 1) % canvas.height;
}
var setup = function() {
canvas = document.getElementById("tv");
context = canvas.getContext("2d");
}
setup();
intervalId = setInterval(makeNoise, 50);
<canvas id="tv" width="400" height="300"></canvas>
I used it as a preloader on a site. I also added a volume rocker as a loading bar, here's a screenshot:
I re-wrote your code so each step is separate so you can re-use things without having to create and re-create each time, reduced in-loop calls and hopefully made it clear enough to be able to follow by reading it.
function generateNoise(opacity, h, w) {
function makeCanvas(h, w) {
var canvas = document.createElement('canvas');
canvas.height = h;
canvas.width = w;
return canvas;
}
function randomise(data, opacity) { // see prev. revision for 8-bit
var i, x;
for (i = 0; i < data.length; ++i) {
x = Math.floor(Math.random() * 0xffffff); // random RGB
data[i] = x | opacity; // set all of RGBA for pixel in one go
}
}
function initialise(opacity, h, w) {
var canvas = makeCanvas(h, w),
context = canvas.getContext('2d'),
image = context.createImageData(h, w),
data = new Uint32Array(image.data.buffer);
opacity = Math.floor(opacity * 0x255) << 24; // make bitwise OR-able
return function () {
randomise(data, opacity); // could be in-place for less overhead
context.putImageData(image, 0, 0);
// you may want to consider other ways of setting the canvas
// as the background so you can take this out of the loop, too
document.body.style.backgroundImage = "url(" + canvas.toDataURL("image/png") + ")";
};
}
return initialise(opacity || 0.2, h || 55, w || 55);
}
Now you can create some interval or timeout loop which keeps re-invoking the generated function.
window.setInterval(
generateNoise(.8, 200, 200),
100
);
Or with requestAnimationFrame
as in Ken's answer
var noise = generateNoise(.8, 200, 200);
(function loop() {
noise();
requestAnimationFrame(loop);
})();
DEMO
Ken's answer looked pretty good, but after looking at some videos of real TV static, I had some ideas and here's what I came up with (two versions):
http://jsfiddle.net/2bzqs/
http://jsfiddle.net/EnQKm/
Summary of changes:
- Instead of every pixel being independently assigned a color, a run of multiple pixels will get a single color, so you get these short, variable-sized horizontal lines.
- I apply a gamma curve (with the Math.pow) to bias the color toward black a little.
- I don't apply the gamma in a "band" area to simulate the banding.
Here's the main part of the code:
var w = ctx.canvas.width,
h = ctx.canvas.height,
idata = ctx.createImageData(w, h),
buffer32 = new Uint32Array(idata.data.buffer),
len = buffer32.length,
run = 0,
color = 0,
m = Math.random() * 6 + 4,
band = Math.random() * 256 * 256,
p = 0,
i = 0;
for (; i < len;) {
if (run < 0) {
run = m * Math.random();
p = Math.pow(Math.random(), 0.4);
if (i > band && i < band + 48 * 256) {
p = Math.random();
}
color = (255 * p) << 24;
}
run -= 1;
buffer32[i++] = color;
}
Update 1/2017: I rewrote the entire answer as it started to become rather messy, and to address some of the issues pointed out in the comments. The original answer can be found here. The new answer has in essence the same code but improved, and with a couple of new techniques, one utilizes a new feature available since this answer was first posted.
For a "true" random look we would need to use pixel-level rendering. We can optimize this using 32-bit unsigned buffers instead of 8-bit, and we can also turn off the alpha-channel in more recent browsers which speeds up the entire process (for older browsers we can simply set a black opaque background for the canvas element).
We create a reusable ImageData
object once outside the main loop so the main cost is only putImageData()
and not both inside the loop.
var ctx = c.getContext("2d", {alpha: false}); // context without alpha channel.
var idata = ctx.createImageData(c.width, c.height); // create image data
var buffer32 = new Uint32Array(idata.data.buffer); // get 32-bit view
(function loop() {
noise(ctx);
requestAnimationFrame(loop)
})()
function noise(ctx) {
var len = buffer32.length - 1;
while(len--) buffer32[len] = Math.random() < 0.5 ? 0 : -1>>0;
ctx.putImageData(idata, 0, 0);
}
/* for browsers wo/2d alpha disable support */
#c {background:#000}
<canvas id=c width=640 height=320></canvas>
A very efficient way, at the cost of some memory but reduced cost on the CPU, is to pre-render a larger off-screen canvas with the noise once, then place that canvas into the main one using random integer offsets.
It require a few extra preparation steps but the loop can run entirely on the GPU.
var w = c.width;
var h = c.height;
var ocanvas = document.createElement("canvas"); // create off-screen canvas
ocanvas.width = w<<1; // set offscreen canvas x2 size
ocanvas.height = h<<1;
var octx = ocanvas.getContext("2d", {alpha: false});
var idata = octx.createImageData(ocanvas.width, ocanvas.height);
var buffer32 = new Uint32Array(idata.data.buffer); // get 32-bit view
// render noise once, to the offscreen-canvas
noise(octx);
// main loop draw the offscreen canvas to random offsets
var ctx = c.getContext("2d", {alpha: false});
(function loop() {
var x = (w * Math.random())|0; // force integer values for position
var y = (h * Math.random())|0;
ctx.drawImage(ocanvas, -x, -y); // draw static noise (pun intended)
requestAnimationFrame(loop)
})()
function noise(ctx) {
var len = buffer32.length - 1;
while(len--) buffer32[len] = Math.random() < 0.5 ? 0 : -1>>0;
ctx.putImageData(idata, 0, 0);
}
/* for browsers wo/2d alpha disable support */
#c {background:#000}
<canvas id=c width=640 height=320></canvas>
Do note though that with the latter technique you may risk getting "freezes" where the new random offset is similar to the previous one. To work around this problem, set criteria for the random position to disallow too close positions in a row.