Apache Spark: Get number of records per partition

I'd use built-in function. It should be as efficient as it gets:

import org.apache.spark.sql.functions.spark_partition_id

df.groupBy(spark_partition_id).count

Spark/scala:

val numPartitions = 20000
val a = sc.parallelize(0 until 1e6.toInt, numPartitions )
val l = a.glom().map(_.length).collect()  # get length of each partition
print(l.min, l.max, l.sum/l.length, l.length)  # check if skewed

PySpark:

num_partitions = 20000
a = sc.parallelize(range(int(1e6)), num_partitions)
l = a.glom().map(len).collect()  # get length of each partition
print(min(l), max(l), sum(l)/len(l), len(l))  # check if skewed

The same is possible for a dataframe, not just for an RDD. Just add DF.rdd.glom... into the code above.

Credits: Mike Dusenberry @ https://issues.apache.org/jira/browse/SPARK-17817


For future PySpark users:

from pyspark.sql.functions  import spark_partition_id
rawDf.withColumn("partitionId", spark_partition_id()).groupBy("partitionId").count().show()

You can get the number of records per partition like this :

df
  .rdd
  .mapPartitionsWithIndex{case (i,rows) => Iterator((i,rows.size))}
  .toDF("partition_number","number_of_records")
  .show

But this will also launch a Spark Job by itself (because the file must be read by spark to get the number of records).

Spark could may also read hive table statistics, but I don't know how to display those metadata..