Append tfidf to pandas dataframe
You can proceed as follows:
Load data into a dataframe:
import pandas as pd
df = pd.read_table("/tmp/test.csv", sep="\s+")
print(df)
Output:
col1 col2 col3 text
0 1 1 0 meaningful text
1 5 9 7 trees
2 7 8 2 text
Tokenize the text
column using: sklearn.feature_extraction.text.TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
v = TfidfVectorizer()
x = v.fit_transform(df['text'])
Convert the tokenized data into a dataframe:
df1 = pd.DataFrame(x.toarray(), columns=v.get_feature_names())
print(df1)
Output:
meaningful text trees
0 0.795961 0.605349 0.0
1 0.000000 0.000000 1.0
2 0.000000 1.000000 0.0
Concatenate the tokenization dataframe to the orignal one:
res = pd.concat([df, df1], axis=1)
print(res)
Output:
col1 col2 col3 text meaningful text trees
0 1 1 0 meaningful text 0.795961 0.605349 0.0
1 5 9 7 trees 0.000000 0.000000 1.0
2 7 8 2 text 0.000000 1.000000 0.0
If you want to drop the column text
, you need to do that before the concatenation:
df.drop('text', axis=1, inplace=True)
res = pd.concat([df, df1], axis=1)
print(res)
Output:
col1 col2 col3 meaningful text trees
0 1 1 0 0.795961 0.605349 0.0
1 5 9 7 0.000000 0.000000 1.0
2 7 8 2 0.000000 1.000000 0.0
Here's the full code:
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
df = pd.read_table("/tmp/test.csv", sep="\s+")
v = TfidfVectorizer()
x = v.fit_transform(df['text'])
df1 = pd.DataFrame(x.toarray(), columns=v.get_feature_names())
df.drop('text', axis=1, inplace=True)
res = pd.concat([df, df1], axis=1)
You can try the following -
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
# create some data
col1 = np.asarray(np.random.choice(10,size=(10)))
col2 = np.asarray(np.random.choice(10,size=(10)))
col3 = np.asarray(np.random.choice(10,size=(10)))
text = ['Some models allow for specialized',
'efficient parameter search strategies,',
'outlined below. Two generic approaches',
'to sampling search candidates are ',
'provided in scikit-learn: for given values,',
'GridSearchCV exhaustively considers all',
'parameter combinations, while RandomizedSearchCV',
'can sample a given number of candidates',
' from a parameter space with a specified distribution.',
' After describing these tools we detail best practice applicable to both approaches.']
# create a dataframe from the the created data
df = pd.DataFrame([col1,col2,col3,text]).T
# set column names
df.columns=['col1','col2','col3','text']
tfidf_vec = TfidfVectorizer()
tfidf_dense = tfidf_vec.fit_transform(df['text']).todense()
new_cols = tfidf_vec.get_feature_names()
# remove the text column as the word 'text' may exist in the words and you'll get an error
df = df.drop('text',axis=1)
# join the tfidf values to the existing dataframe
df = df.join(pd.DataFrame(tfidf_dense, columns=new_cols))
I would like to add some information to the accepted answer.
Before concatenating the two DataFrames (i.e. main DataFrame and TF-IDF DataFrame), make sure that the indices between the two DataFrames are similar. For instance, you can use df.reset_index(drop=True, inplace=True) to reset the DataFrame index.
Otherwise, your concatenated DataFrames will contain a lot of NaN rows. Having looked at the comments, this is probably what the OP experienced.