applications of longest common subsequence code example
Example 1: longest common subsequence codefroces
using namespace std;
const int MAX = 1001;
int dp[MAX][MAX];
bool visited[MAX][MAX];
int x, y;
string s1, s2;
int lcs(int i, int j)
{
if(i == x || j == y)
return 0;
if(visited[i][j])
return dp[i][j];
visited[i][j] = true;
int ans = 0;
if(s1[i] == s2[j])
{
ans = max(ans, 1+lcs(i+1, j+1));
}
else
{
ans = max(ans, lcs(i+1, j));
ans = max(ans, lcs(i, j+1));
}
dp[i][j] = ans;
return ans;
}
int main()
{
cin >> x >> y;
cin >> s1 >> s2;
for(int i=0; i<=x; i++)
{
for(int j=0; j<=y; j++)
{
visited[i][j] = false;
}
}
cout << lcs(0, 0);
return 0;
}
Example 2: longest common subsequence
int maxSubsequenceSubstring(char x[], char y[],
int n, int m)
{
int dp[MAX][MAX];
// Initialize the dp[][] to 0.
for (int i = 0; i <= m; i++)
for (int j = 0; j <= n; j++)
dp[i][j] = 0;
// Calculating value for each element.
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
// If alphabet of string X and Y are
// equal make dp[i][j] = 1 + dp[i-1][j-1]
if (x[j - 1] == y[i - 1])
dp[i][j] = 1 + dp[i - 1][j - 1];
// Else copy the previous value in the
// row i.e dp[i-1][j-1]
else
dp[i][j] = dp[i][j - 1];
}
}
// Finding the maximum length.
int ans = 0;
for (int i = 1; i <= m; i++)
ans = max(ans, dp[i][n]);
return ans;
}