applying if lese condition to update the column pandas code example
Example 1: compute value based on condition of existing column dataframe
conditions = [
(df['likes_count'] <= 2),
(df['likes_count'] > 2) & (df['likes_count'] <= 9),
(df['likes_count'] > 9) & (df['likes_count'] <= 15),
(df['likes_count'] > 15)
]
values = ['tier_4', 'tier_3', 'tier_2', 'tier_1']
df['tier'] = np.select(conditions, values)
df.head()
Example 2: pandas update with condition
import pandas as pd
import numpy as np
df = pd.DataFrame({'value':np.arange(1000000)})
df['value'] = np.where(df['value'] > 20000, 0, df['value'])
df.loc[df['value'] > 20000, 'value'] = 0
df['value'] = df['value'].mask(df['value'] > 20000, 0)
df['a'] = df.where(df.a <= 20000, 0)