ArrayList vs List<> in C#

Yes, pretty much. List<T> is a generic class. It supports storing values of a specific type without casting to or from object (which would have incurred boxing/unboxing overhead when T is a value type in the ArrayList case). ArrayList simply stores object references. As a generic collection, List<T> implements the generic IEnumerable<T> interface and can be used easily in LINQ (without requiring any Cast or OfType call).

ArrayList belongs to the days that C# didn't have generics. It's deprecated in favor of List<T>. You shouldn't use ArrayList in new code that targets .NET >= 2.0 unless you have to interface with an old API that uses it.


Using List<T> you can prevent casting errors. It is very useful to avoid a runtime casting error.

Example:

Here (using ArrayList) you can compile this code but you will see an execution error later.

ArrayList array1 = new ArrayList();
array1.Add(1);
array1.Add("Pony"); //No error at compile process
int total = 0;
foreach (int num in array1)
{
 total += num; //-->Runtime Error
}

If you use List, you avoid these errors:

List<int> list1 = new List<int>();
list1.Add(1);
//list1.Add("Pony"); //<-- Error at compile process
int total = 0;
foreach (int num in list1 )
{
 total += num;
}

Reference: MSDN


To add to the above points. Using ArrayList in 64bit operating system takes 2x memory than using in the 32bit operating system. Meanwhile, generic list List<T> will use much low memory than the ArrayList.

for example if we use a ArrayList of 19MB in 32-bit it would take 39MB in the 64-bit. But if you have a generic list List<int> of 8MB in 32-bit it would take only 8.1MB in 64-bit, which is a whooping 481% difference when compared to ArrayList.

Source: ArrayList’s vs. generic List for primitive types and 64-bits