assign value to dataframe column based on condition code example
Example 1: compute value based on condition of existing column dataframe
# create a list of our conditions
conditions = [
(df['likes_count'] <= 2),
(df['likes_count'] > 2) & (df['likes_count'] <= 9),
(df['likes_count'] > 9) & (df['likes_count'] <= 15),
(df['likes_count'] > 15)
]
# create a list of the values we want to assign for each condition
values = ['tier_4', 'tier_3', 'tier_2', 'tier_1']
# create a new column and use np.select to assign values to it using our lists as arguments
df['tier'] = np.select(conditions, values)
# display updated DataFrame
df.head()
Example 2: set value based on column
df.loc[df['c1'] == 'Value', 'c2'] = 10
Example 3: change pandas column value based on condition
In [41]:
df.loc[df['First Season'] > 1990, 'First Season'] = 1
df
Out[41]:
Team First Season Total Games
0 Dallas Cowboys 1960 894
1 Chicago Bears 1920 1357
2 Green Bay Packers 1921 1339
3 Miami Dolphins 1966 792
4 Baltimore Ravens 1 326
5 San Franciso 49ers 1950 1003
Example 4: if in df.columns
import pandas as pd
numbers = {'set_of_numbers': [1,2,3,4,5,6,7,8,9,10]}
df = pd.DataFrame(numbers,columns=['set_of_numbers'])
df['equal_or_lower_than_4?'] = df['set_of_numbers'].apply(lambda x: 'True' if x <= 4 else 'False')
print (df)