Example 1: how to plot a bar using matplotlib
import matplotlib.pyplot as plt
# creating the dataset
data = {'C':20, 'C++':15, 'Java':30,
'Python':35}
courses = list(data.keys())
values = list(data.values())
fig = plt.figure(figsize = (5, 5))
# creating the bar plot
plt.bar(courses, values, color ='green',
width = 0.4)
plt.xlabel("Courses offered")
plt.ylabel("No. of students enrolled")
plt.title("Students enrolled in different courses")
plt.show()
Example 2: how to plotting bar on matplotlib
import matplotlib.pyplot as plt
data = [5., 25., 50., 20.]
plt.bar(range(len(data)),data)
plt.show()
// to set the thickness of a bar, we can set 'width'
// plt.bar(range(len(data)), data, width = 1.)
Example 3: bar plot matplotlib
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_axes([0,0,1,1])
langs = ['C', 'C++', 'Java', 'Python', 'PHP']
students = [23,17,35,29,12]
ax.bar(langs,students)
plt.show()
Example 4: matplotlib bar chart
import matplotlib.pyplot as plt
# Create a Simple Bar Plot of Three People's Ages
# Create a List of Labels for x-axis
names = ["Brad", "Bill", "Bob"]
# Create a List of Values (Same Length as Names List)
ages = [9, 5, 10]
# Make the Chart
plt.bar(names, ages)
# Show the Chart
plt.show()
Example 5: bar chart in python
import numpy as npimport matplotlib.pyplot as plt# data to plotn_groups = 4means_frank = (90, 55, 40, 65)means_guido = (85, 62, 54, 20)# create plotfig, ax = plt.subplots()index = np.arange(n_groups)bar_width = 0.35opacity = 0.8rects1 = plt.bar(index, means_frank, bar_width,alpha=opacity,color='b',label='Frank')rects2 = plt.bar(index + bar_width, means_guido, bar_width,alpha=opacity,color='g',label='Guido')plt.xlabel('Person')plt.ylabel('Scores')plt.title('Scores by person')plt.xticks(index + bar_width, ('A', 'B', 'C', 'D'))plt.legend()plt.tight_layout()plt.show()