Better proof for $\frac{1+\cos x + \sin x}{1 - \cos x + \sin x} \equiv \frac{1+\cos x}{\sin x}$
Since $1-\cos^2 x = \sin^2 x$, we have $f(x) := \dfrac{1+\cos x}{\sin x} = \dfrac{\sin x}{1-\cos x}$. Therefore,
\begin{align*}\dfrac{1+\cos x + \sin x}{1-\cos x + \sin x} &= \dfrac{f(x)\sin x + f(x)(1-\cos x)}{1-\cos x + \sin x} \\ &= \dfrac{f(x)[1-\cos x + \sin x]}{1-\cos x + \sin x} \\ &= f(x) \\ &= \dfrac{1+\cos x}{\sin x}.\end{align*}
For fun, I created a trigonograph:
$$\frac{1 + \cos\theta + \sin\theta}{1 + \sin\theta - \cos\theta} = \frac{1 + \cos\theta}{\sin\theta}$$
Observe $$(1 - \cos x + \sin x)(1 + \cos x) = (1 - \cos^2 x) + (1 + \cos x)\sin x = \sin^2 x + (1 + \cos x)\sin x = (1 + \cos x + \sin x)\sin x,$$ from which the result immediately follows.