Bézier curve fitting with SciPy
Here's a way to do Bezier curves with numpy:
import numpy as np
from scipy.special import comb
def bernstein_poly(i, n, t):
"""
The Bernstein polynomial of n, i as a function of t
"""
return comb(n, i) * ( t**(n-i) ) * (1 - t)**i
def bezier_curve(points, nTimes=1000):
"""
Given a set of control points, return the
bezier curve defined by the control points.
points should be a list of lists, or list of tuples
such as [ [1,1],
[2,3],
[4,5], ..[Xn, Yn] ]
nTimes is the number of time steps, defaults to 1000
See http://processingjs.nihongoresources.com/bezierinfo/
"""
nPoints = len(points)
xPoints = np.array([p[0] for p in points])
yPoints = np.array([p[1] for p in points])
t = np.linspace(0.0, 1.0, nTimes)
polynomial_array = np.array([ bernstein_poly(i, nPoints-1, t) for i in range(0, nPoints) ])
xvals = np.dot(xPoints, polynomial_array)
yvals = np.dot(yPoints, polynomial_array)
return xvals, yvals
if __name__ == "__main__":
from matplotlib import pyplot as plt
nPoints = 4
points = np.random.rand(nPoints,2)*200
xpoints = [p[0] for p in points]
ypoints = [p[1] for p in points]
xvals, yvals = bezier_curve(points, nTimes=1000)
plt.plot(xvals, yvals)
plt.plot(xpoints, ypoints, "ro")
for nr in range(len(points)):
plt.text(points[nr][0], points[nr][1], nr)
plt.show()
Here is a piece of python code for fitting points:
'''least square qbezier fit using penrose pseudoinverse
>>> V=array
>>> E, W, N, S = V((1,0)), V((-1,0)), V((0,1)), V((0,-1))
>>> cw = 100
>>> ch = 300
>>> cpb = V((0, 0))
>>> cpe = V((cw, 0))
>>> xys=[cpb,cpb+ch*N+E*cw/8,cpe+ch*N+E*cw/8, cpe]
>>>
>>> ts = V(range(11), dtype='float')/10
>>> M = bezierM (ts)
>>> points = M*xys #produces the points on the bezier curve at t in ts
>>>
>>> control_points=lsqfit(points, M)
>>> linalg.norm(control_points-xys)<10e-5
True
>>> control_points.tolist()[1]
[12.500000000000037, 300.00000000000017]
'''
from numpy import array, linalg, matrix
from scipy.misc import comb as nOk
Mtk = lambda n, t, k: t**(k)*(1-t)**(n-k)*nOk(n,k)
bezierM = lambda ts: matrix([[Mtk(3,t,k) for k in range(4)] for t in ts])
def lsqfit(points,M):
M_ = linalg.pinv(M)
return M_ * points
Generally on bezier curves check out Animated bezier and bezierinfo
@keynesiancross asked for "comments in [Roland's] code as to what the variables are" and others completely missed the stated problem. Roland started with a Bézier curve as input (to get a perfect match), which made it harder to understand both the problem and (at least for me) the solution. The difference from interpolation is easier to see for input that leaves residuals. Here is both paraphrased code and non-Bézier input -- and an unexpected outcome.
import matplotlib.pyplot as plt
import numpy as np
from scipy.special import comb as n_over_k
Mtk = lambda n, t, k: t**k * (1-t)**(n-k) * n_over_k(n,k)
BézierCoeff = lambda ts: [[Mtk(3,t,k) for k in range(4)] for t in ts]
fcn = np.log
tPlot = np.linspace(0. ,1. , 81)
xPlot = np.linspace(0.1,2.5, 81)
tData = tPlot[0:81:10]
xData = xPlot[0:81:10]
data = np.column_stack((xData, fcn(xData))) # shapes (9,2)
Pseudoinverse = np.linalg.pinv(BézierCoeff(tData)) # (9,4) -> (4,9)
control_points = Pseudoinverse.dot(data) # (4,9)*(9,2) -> (4,2)
Bézier = np.array(BézierCoeff(tPlot)).dot(control_points)
residuum = fcn(Bézier[:,0]) - Bézier[:,1]
fig, ax = plt.subplots()
ax.plot(xPlot, fcn(xPlot), 'r-')
ax.plot(xData, data[:,1], 'ro', label='input')
ax.plot(Bézier[:,0],
Bézier[:,1], 'k-', label='fit')
ax.plot(xPlot, 10.*residuum, 'b-', label='10*residuum')
ax.plot(control_points[:,0],
control_points[:,1], 'ko:', fillstyle='none')
ax.legend()
fig.show()
This works well for fcn = np.cos
but not for log
. I kind of expected that the fit would use the t-component of the control points as additional degrees of freedom, as we would do by dragging the control points:
manual_points = np.array([[0.1,np.log(.1)],[.27,-.6],[.82,.23],[2.5,np.log(2.5)]])
Bézier = np.array(BézierCoeff(tPlot)).dot(manual_points)
residuum = fcn(Bézier[:,0]) - Bézier[:,1]
fig, ax = plt.subplots()
ax.plot(xPlot, fcn(xPlot), 'r-')
ax.plot(xData, data[:,1], 'ro', label='input')
ax.plot(Bézier[:,0],
Bézier[:,1], 'k-', label='fit')
ax.plot(xPlot, 10.*residuum, 'b-', label='10*residuum')
ax.plot(manual_points[:,0],
manual_points[:,1], 'ko:', fillstyle='none')
ax.legend()
fig.show()
The cause of failure, I guess, is that the norm measures the distance between points on the curves instead of the distance between a point on one curve to the nearest point on the other curve.