Bicubic Interpolation?
Using this (Thanks to Ahmet Kakıcı who found this), I figured out how to add Bicubic Interpolation. For those also looking for the answer, here is what I used:
private float CubicPolate( float v0, float v1, float v2, float v3, float fracy ) {
float A = (v3-v2)-(v0-v1);
float B = (v0-v1)-A;
float C = v2-v0;
float D = v1;
return A*Mathf.Pow(fracy,3)+B*Mathf.Pow(fracy,2)+C*fracy+D;
}
In order to get 2D Interpolation, I first got the x, then interpolated the y. Eg.
float x1 = CubicPolate( ndata[0,0], ndata[1,0], ndata[2,0], ndata[3,0], fracx );
float x2 = CubicPolate( ndata[0,1], ndata[1,1], ndata[2,1], ndata[3,1], fracx );
float x3 = CubicPolate( ndata[0,2], ndata[1,2], ndata[2,2], ndata[3,2], fracx );
float x4 = CubicPolate( ndata[0,3], ndata[1,3], ndata[2,3], ndata[3,3], fracx );
float y1 = CubicPolate( x1, x2, x3, x4, fracy );
Where ndata is defined as:
float[,] ndata = new float[4,4];
for( int X = 0; X < 4; X++ )
for( int Y = 0; Y < 4; Y++ )
//Smoothing done by averaging the general area around the coords.
ndata[X,Y] = SmoothedNoise( intx+(X-1), inty+(Y-1) );
(intx and inty are the floored values of the requested coordinates. fracx and fracy are the fractional parts of the inputted coordinates, to be x-intx
, and y-inty
, respectively)
Took Eske Rahn answer and made a single call (note, the code below uses matrix dimensions convention of (j, i) rather than image of (x, y) but that shouldn't matter for interpolation sake):
/// <summary>
/// Holds extension methods.
/// </summary>
public static class Extension
{
/// <summary>
/// Performs a bicubic interpolation over the given matrix to produce a
/// [<paramref name="outHeight"/>, <paramref name="outWidth"/>] matrix.
/// </summary>
/// <param name="data">
/// The matrix to interpolate over.
/// </param>
/// <param name="outWidth">
/// The width of the output matrix.
/// </param>
/// <param name="outHeight">
/// The height of the output matrix.
/// </param>
/// <returns>
/// The interpolated matrix.
/// </returns>
/// <remarks>
/// Note, dimensions of the input and output matrices are in
/// conventional matrix order, like [matrix_height, matrix_width],
/// not typical image order, like [image_width, image_height]. This
/// shouldn't effect the interpolation but you must be aware of it
/// if you are working with imagery.
/// </remarks>
public static float[,] BicubicInterpolation(
this float[,] data,
int outWidth,
int outHeight)
{
if (outWidth < 1 || outHeight < 1)
{
throw new ArgumentException(
"BicubicInterpolation: Expected output size to be " +
$"[1, 1] or greater, got [{outHeight}, {outWidth}].");
}
// props to https://stackoverflow.com/a/20924576/240845 for getting me started
float InterpolateCubic(float v0, float v1, float v2, float v3, float fraction)
{
float p = (v3 - v2) - (v0 - v1);
float q = (v0 - v1) - p;
float r = v2 - v0;
return (fraction * ((fraction * ((fraction * p) + q)) + r)) + v1;
}
// around 6000 gives fastest results on my computer.
int rowsPerChunk = 6000 / outWidth;
if (rowsPerChunk == 0)
{
rowsPerChunk = 1;
}
int chunkCount = (outHeight / rowsPerChunk)
+ (outHeight % rowsPerChunk != 0 ? 1 : 0);
var width = data.GetLength(1);
var height = data.GetLength(0);
var ret = new float[outHeight, outWidth];
Parallel.For(0, chunkCount, (chunkNumber) =>
{
int jStart = chunkNumber * rowsPerChunk;
int jStop = jStart + rowsPerChunk;
if (jStop > outHeight)
{
jStop = outHeight;
}
for (int j = jStart; j < jStop; ++j)
{
float jLocationFraction = j / (float)outHeight;
var jFloatPosition = height * jLocationFraction;
var j2 = (int)jFloatPosition;
var jFraction = jFloatPosition - j2;
var j1 = j2 > 0 ? j2 - 1 : j2;
var j3 = j2 < height - 1 ? j2 + 1 : j2;
var j4 = j3 < height - 1 ? j3 + 1 : j3;
for (int i = 0; i < outWidth; ++i)
{
float iLocationFraction = i / (float)outWidth;
var iFloatPosition = width * iLocationFraction;
var i2 = (int)iFloatPosition;
var iFraction = iFloatPosition - i2;
var i1 = i2 > 0 ? i2 - 1 : i2;
var i3 = i2 < width - 1 ? i2 + 1 : i2;
var i4 = i3 < width - 1 ? i3 + 1 : i3;
float jValue1 = InterpolateCubic(
data[j1, i1], data[j1, i2], data[j1, i3], data[j1, i4], iFraction);
float jValue2 = InterpolateCubic(
data[j2, i1], data[j2, i2], data[j2, i3], data[j2, i4], iFraction);
float jValue3 = InterpolateCubic(
data[j3, i1], data[j3, i2], data[j3, i3], data[j3, i4], iFraction);
float jValue4 = InterpolateCubic(
data[j4, i1], data[j4, i2], data[j4, i3], data[j4, i4], iFraction);
ret[j, i] = InterpolateCubic(
jValue1, jValue2, jValue3, jValue4, jFraction);
}
}
});
return ret;
}
}