Example 1: binary search program c++
using namespace std;
// This program performs a binary search through an array, must be sorted to work
int binarySearch(int array[], int size, int value)
{
int first = 0, // First array element
last = size - 1, // Last array element
middle, // Mid point of search
position = -1; // Position of search value
bool found = false; // Flag
while (!found && first <= last)
{
middle = (first + last) / 2; // Calculate mid point
if (array[middle] == value) // If value is found at mid
{
found = true;
position = middle;
}
else if (array[middle] > value) // If value is in lower half
last = middle - 1;
else
first = middle + 1; // If value is in upper half
}
return position;
}
int main ()
{
const int size = 5; // size initialization
int array[size] = {1, 2, 3, 4, 5}; // declare array of size 10
int value; // declare value to be searched for
int result; // declare variable that will be returned after binary search
cout << "What value would you like to search for? "; // prompt user to enter value
cin >> value;
result = binarySearch(array, size, value);
if (result == -1) // if value isn't found display this message
cout << "Not found\n";
else // If value is found, displays message
cout << "Your value is in the array.\n";
return 0;
}
Example 2: python code for binary search tree
class node:
def __init__(self,data):
self.data=data
self.left=None
self.right=None
class binarytree:
def __init__(self):
self.root=None
def insert(self,data):
if self.root==None:
self.root=node(data)
else:
self._insert(data,self.root)
def _insert(self,data,cur_node):
if data<cur_node.data:
if cur_node.left==None:
cur_node.left=node(data)
else:
self._insert(data,cur_node.left)
elif data>cur_node.data:
if cur_node.right==None:
cur_node.right=node(data)
else:
self._insert(data,cur_node.right)
else:
print('Data In Treee Already')
def remove(self,data):
if self.root!=None:
self._remove(data,self.root)
def _remove(self,data,cur_node):
if cur_node == None:
return cur_node
if data<cur_node.data:
cur_node.left=self._remove(data,cur_node.left)
elif data>cur_node.data:
cur_node.right=self._remove(data,cur_node.right)
else:
if cur_node.left is None and cur_node.right is None:
print('Removing Leaf Node')
if cur_node==self.root:
self.root=None
del cur_node
return None
if cur_node.left is None:
print('Removing None with Right Child')
if cur_node==self.root:
self.root=cur_node.right
tempnode=cur_node.right
del cur_node
return tempnode
elif cur_node.right is None:
print('Removing None with Left Child')
if cur_node==self.root:
self.root=cur_node.left
tempnode=cur_node.left
del cur_node
return tempnode
print('Removing Node with 2 Children')
tempnode=self.getpred(cur_node.left)
cur_node.data=tempnode.data
cur_node.left=self._remove(cur_node.data,cur_node.left)
return cur_node
def getpred(self,cur_node):
if cur_node.right!=None:
return self.getpred(cur_node.right)
return cur_node
def inorder(self):
if self.root!=None:
self._inorder(self.root)
def _inorder(self,cur_node):
if cur_node!=None:
self._inorder(cur_node.left)
print(cur_node.data)
self._inorder(cur_node.right)
def preorder(self):
if self.root!=None:
self._preorder(self.root)
def _preorder(self,cur_node):
if cur_node!=None:
print(cur_node.data)
self._preorder(cur_node.left)
self._preorder(cur_node.right)
def postorder(self):
if self.root!=None:
self._postorder(self.root)
def _postorder(self,cur_node):
if cur_node!=None:
self._postorder(cur_node.left)
self._postorder(cur_node.right)
print(cur_node.data)
def minval(self):
if self.root!=None:
return self._minval(self.root)
def _minval(self,cur_node):
if cur_node.left!=None:
return self._minval(cur_node.left)
return cur_node.data
def maxval(self):
if self.root!=None:
return self._maxval(self.root)
def _maxval(self,cur_node):
if cur_node.right!=None:
return self._maxval(cur_node.right)
return cur_node.data
tree=binarytree()
tree.insert(100)
tree.insert(90)
tree.insert(110)
tree.insert(95)
tree.insert(30)
tree.remove(110)
tree.remove(90)
tree.inorder()
print(tree.minval())
print(tree.maxval())
Example 3: binary search in c++
using namespace std;
int binarySearch(int arr[], int p, int r, int num) {
if (p <= r) {
int mid = (p + r)/2;
if (arr[mid] == num)
return mid ;
if (arr[mid] > num)
return binarySearch(arr, p, mid-1, num);
if (arr[mid] < num)
return binarySearch(arr, mid+1, r, num);
}
return -1;
}
int main(void) {
int arr[] = {1, 3, 7, 15, 18, 20, 25, 33, 36, 40};
int n = sizeof(arr)/ sizeof(arr[0]);
int num = 33;
int index = binarySearch (arr, 0, n-1, num);
if(index == -1)
cout<< num <<" is not present in the array";
else
cout<< num <<" is present at index "<< index <<" in the array";
return 0;
}
Example 4: binary tree search
/* This is just the seaching function you need to write the required code.
Thank you. */
void searchNode(Node *root, int data)
{
if(root == NULL)
{
cout << "Tree is empty\n";
return;
}
queue<Node*> q;
q.push(root);
while(!q.empty())
{
Node *temp = q.front();
q.pop();
if(temp->data == data)
{
cout << "Node found\n";
return;
}
if(temp->left != NULL)
q.push(temp->left);
if(temp->right != NULL)
q.push(temp->right);
}
cout << "Node not found\n";
}
Example 5: binary search tree
Binary Search Tree is a node-based binary tree data structure which has the following properties:
The left subtree of a node contains only nodes with keys lesser than the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
The left and right subtree each must also be a binary search tree.
Example 6: insert binary search tree
void BSNode::insert(std::string value) {
if (this->_data == value) {
_count++;
return;
}
if (this->_data > value) {
if (this->getLeft() == nullptr) {
this->_left = new BSNode(value);
}
this->getLeft()->insert(value);
return;
}
if (this->getRight() == nullptr) {
this->_right = new BSNode(value);
return;
}
this->getRight()->insert(value);
}