Binding list of data.tables by columns, and by reference
How about the following?
# check.names = TRUE forces unique names on the output
setDT(
unlist(X, recursive = FALSE),
check.names = TRUE
)[]
# V1 V2 V3 V4 V5
# 1: 1 3 5 a c
# 2: 2 4 6 b d
The bind_cols
from dplyr
seems to be efficient compared to the do.call(cbind
and it returns a data.table
library(dplyr)
bind_cols(X)
# V1 V2 V3 V11 V21
#1: 1 3 5 a c
#2: 2 4 6 b d
Benchmarks
set.seed(24)
X1 <- lapply(1:10, function(i)
as.data.table(matrix(sample(1:9, 1e5*1e3, replace = TRUE), nrow = 1e5, ncol = 1e3)))
system.time({
bind_cols(X1)
})
#user system elapsed
# 0.01 0.00 0.02
system.time({
do.call(cbind, X1)
})
#user system elapsed
# 2.22 37.84 40.93
system.time({
setDT(unlist(X1, recursive = FALSE), check.names = TRUE)
})
# user system elapsed
# 0.05 0.00 0.05
Or with check.names = FALSE
system.time({
setDT(unlist(X1, recursive = FALSE), check.names = FALSE)
})
# user system elapsed
# 0.01 0.00 0.02
Also based on @MichaelChirico's example data for testing
set.seed(24)
NN <- 1e6
L <- lapply(integer(20L), function(ii) {
setDT(lapply(integer(sample(15L, 1L)), function(x) rnorm(NN))) })
system.time({
bind_cols(L)
})
# user system elapsed
# 0 0 0
system.time({
do.call(cbind, L)
})
# user system elapsed
# 0.44 0.53 0.97
system.time({
base = L[[1L]]
jj = ncol(base) + 1L
for (ii in 2L:length(L)) {
for (col_j in seq_len(ncol(L[[ii]]))) {
set(base, , sprintf('V%d', jj), L[[ii]][[col_j]])
jj = jj + 1L
}
}
})
#user system elapsed
# 0.12 0.33 0.46
and with @MichaelChirico's updated method
system.time({
setDT(unlist(L, recursive = FALSE), check.names = TRUE)
})
# user system elapsed
# 0 0 0