Boxplot of Multiple Columns of a Pandas Dataframe on the Same Figure (seaborn)
The seaborn equivalent of
df.boxplot()
is
sns.boxplot(x="variable", y="value", data=pd.melt(df))
or just
sns.boxplot(data=df)
which will plot any column of numeric values, without converting the DataFrame from a wide to long format, using seaborn v0.11.1
. This will create a single figure, with a separate boxplot for each column.
Complete example with melt
:
import numpy as np; np.random.seed(42)
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.DataFrame(data = np.random.random(size=(4,4)), columns = ['A','B','C','D'])
sns.boxplot(x="variable", y="value", data=pd.melt(df))
plt.show()
This works because pd.melt
converts a wide-form dataframe
A B C D
0 0.374540 0.950714 0.731994 0.598658
1 0.156019 0.155995 0.058084 0.866176
2 0.601115 0.708073 0.020584 0.969910
3 0.832443 0.212339 0.181825 0.183405
to long-form
variable value
0 A 0.374540
1 A 0.156019
2 A 0.601115
3 A 0.832443
4 B 0.950714
5 B 0.155995
6 B 0.708073
7 B 0.212339
8 C 0.731994
9 C 0.058084
10 C 0.020584
11 C 0.181825
12 D 0.598658
13 D 0.866176
14 D 0.969910
15 D 0.183405
plt.boxplot([df1,df2], boxprops=dict(color='red'), labels=['title 1','title 2'])
You could use the built-in pandas method df.plot(kind='box') as suggested in this question.
I realize this answer will not help you if you have to use seaborn, but it may be useful for people with simpler requirements.
import numpy as np; np.random.seed(42)
import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame(data = np.random.random(size=(4,4)), columns = ['A','B','C','D'])
df.plot(kind='box')
plt.show()