British Maths Olympiad (BMO) 2004 Round 1 Question 1 alternative approaches?
Step 1: Obtain $a+c=2$.
Step 2:
Note that $$ab+bc+cd+ad=(a+c)(b+d)$$
Adding four equations gives $$(a+c)(b+d)+2(a+c)+2(b+d)=16$$ $$(a+c)(b+d+2)+2(b+d+2)=20$$ $$(a+c+2)(b+d+2)=20$$
With $a+c=2$, we have $b+d=3$.
Step 3:
Further manipulating, 1-2+3-4 gives $$(a-c)(b+d)=6$$
Thus, $a-c=2$.
Therefore, we have $a=2, c=0$.
Step 4: Put $a,c$ into 1, $$2b+d=3$$ With $b+d=3$, $b=0, d=3$.
Here's a way after you get $a+c=2$.
Take equation $2$ subtract equation $1$ to get $(b-1)(c-a)=2$.
Likewise, take equation $3$ subtract equation $4$ to get $(d-1)(c-a) = -4$.
Finally, we see that \begin{align} \frac{b-1}{d-1}=\frac{(b-1)(c-a)}{(d-1)(c-a)}= -\frac{1}{2} \ \ \implies \ \ 2b+d =3. \end{align}
Next, take equation $1$ plus equation $2$ to get $b(a+c)+(a+c)+2d=8$ which implies $b+d = 3$ since $a+c=2$.
Now, we see that $b=0$ and $d=3$. Using equation $2$, we have that $a=2$ and $c=0$.
My approach was to set $A=a-1,B=b-1,C=c-1,D=d-1$ so that we get \begin{align} AB + A + B + C + D &= 0 \\ BC + A + B + C + D &= 2 \\ CD + A + B + C + D &= -1 \\ AD + A + B + C + D &= 3. \end{align} Letting $S = A+B+C+D$, we have $ABCD = (-S)(-1-S) = (2-S)(3-S)$, so $S=1$, and therefore \begin{align} AB &= -1 \\ BC &= 1 \\ CD &= -2 \\ AD &= 2. \end{align} This gives us $A = -\frac1B$, $C = \frac1B$, and $D = -\frac2C = -2B$.
From $A+B+C+D=1$, we have $-\frac1B + B + \frac1B - 2B = 1$, or $B = -1$. Then we can solve for $A,C,D$ and finally get $a,b,c,d$.