C# Point in polygon
I've checked codes here and all have problems.
The best method is:
/// <summary>
/// Determines if the given point is inside the polygon
/// </summary>
/// <param name="polygon">the vertices of polygon</param>
/// <param name="testPoint">the given point</param>
/// <returns>true if the point is inside the polygon; otherwise, false</returns>
public static bool IsPointInPolygon4(PointF[] polygon, PointF testPoint)
{
bool result = false;
int j = polygon.Count() - 1;
for (int i = 0; i < polygon.Count(); i++)
{
if (polygon[i].Y < testPoint.Y && polygon[j].Y >= testPoint.Y || polygon[j].Y < testPoint.Y && polygon[i].Y >= testPoint.Y)
{
if (polygon[i].X + (testPoint.Y - polygon[i].Y) / (polygon[j].Y - polygon[i].Y) * (polygon[j].X - polygon[i].X) < testPoint.X)
{
result = !result;
}
}
j = i;
}
return result;
}
The accepted answer did not work for me in my project. I ended up using the code found here.
public static bool IsInPolygon(Point[] poly, Point p)
{
Point p1, p2;
bool inside = false;
if (poly.Length < 3)
{
return inside;
}
var oldPoint = new Point(
poly[poly.Length - 1].X, poly[poly.Length - 1].Y);
for (int i = 0; i < poly.Length; i++)
{
var newPoint = new Point(poly[i].X, poly[i].Y);
if (newPoint.X > oldPoint.X)
{
p1 = oldPoint;
p2 = newPoint;
}
else
{
p1 = newPoint;
p2 = oldPoint;
}
if ((newPoint.X < p.X) == (p.X <= oldPoint.X)
&& (p.Y - (long) p1.Y)*(p2.X - p1.X)
< (p2.Y - (long) p1.Y)*(p.X - p1.X))
{
inside = !inside;
}
oldPoint = newPoint;
}
return inside;
}
See this it's in c++ and can be done in c# in a same way.
for convex polygon is too easy:
If the polygon is convex then one can consider the polygon as a "path" from the first vertex. A point is on the interior of this polygons if it is always on the same side of all the line segments making up the path.
Given a line segment between P0 (x0,y0) and P1 (x1,y1), another point P (x,y) has the following relationship to the line segment. Compute (y - y0) (x1 - x0) - (x - x0) (y1 - y0)
if it is less than 0 then P is to the right of the line segment, if greater than 0 it is to the left, if equal to 0 then it lies on the line segment.
Here is its code in c#, I didn't check edge cases.
public static bool IsInPolygon(Point[] poly, Point point)
{
var coef = poly.Skip(1).Select((p, i) =>
(point.Y - poly[i].Y)*(p.X - poly[i].X)
- (point.X - poly[i].X) * (p.Y - poly[i].Y))
.ToList();
if (coef.Any(p => p == 0))
return true;
for (int i = 1; i < coef.Count(); i++)
{
if (coef[i] * coef[i - 1] < 0)
return false;
}
return true;
}
I test it with simple rectangle works fine:
Point[] pts = new Point[] { new Point { X = 1, Y = 1 },
new Point { X = 1, Y = 3 },
new Point { X = 3, Y = 3 },
new Point { X = 3, Y = 1 } };
IsInPolygon(pts, new Point { X = 2, Y = 2 }); ==> true
IsInPolygon(pts, new Point { X = 1, Y = 2 }); ==> true
IsInPolygon(pts, new Point { X = 0, Y = 2 }); ==> false
Explanation on the linq query:
poly.Skip(1)
==> creates a new list started from position 1
of the poly
list and then by
(point.Y - poly[i].Y)*(p.X - poly[i].X) - (point.X - poly[i].X) * (p.Y - poly[i].Y)
we'll going to calculate the direction (which mentioned in referenced paragraph).
similar example (with another operation):
lst = 2,4,8,12,7,19
lst.Skip(1) ==> 4,8,12,7,19
lst.Skip(1).Select((p,i)=>p-lst[i]) ==> 2,4,4,-5,12