calculate exponential moving average in python

You can also use the SciPy filter method because the EMA is an IIR filter. This will have the benefit of being approximately 64 times faster as measured on my system using timeit on large data sets when compared to the enumerate() approach.

import numpy as np
from scipy.signal import lfilter

x = np.random.normal(size=1234)
alpha = .1 # smoothing coefficient
zi = [x[0]] # seed the filter state with first value
# filter can process blocks of continuous data if <zi> is maintained
y, zi = lfilter([1.-alpha], [1., -alpha], x, zi=zi)

I did a bit of googling and I found the following sample code (http://osdir.com/ml/python.matplotlib.general/2005-04/msg00044.html):

def ema(s, n):
    """
    returns an n period exponential moving average for
    the time series s

    s is a list ordered from oldest (index 0) to most
    recent (index -1)
    n is an integer

    returns a numeric array of the exponential
    moving average
    """
    s = array(s)
    ema = []
    j = 1

    #get n sma first and calculate the next n period ema
    sma = sum(s[:n]) / n
    multiplier = 2 / float(1 + n)
    ema.append(sma)

    #EMA(current) = ( (Price(current) - EMA(prev) ) x Multiplier) + EMA(prev)
    ema.append(( (s[n] - sma) * multiplier) + sma)

    #now calculate the rest of the values
    for i in s[n+1:]:
        tmp = ( (i - ema[j]) * multiplier) + ema[j]
        j = j + 1
        ema.append(tmp)

    return ema

EDIT: It seems that mov_average_expw() function from scikits.timeseries.lib.moving_funcs submodule from SciKits (add-on toolkits that complement SciPy) better suits the wording of your question.


To calculate an exponential smoothing of your data with a smoothing factor alpha (it is (1 - alpha) in Wikipedia's terms):

>>> alpha = 0.5
>>> assert 0 < alpha <= 1.0
>>> av = sum(alpha**n.days * iq 
...     for n, iq in map(lambda (day, iq), today=max(days): (today-day, iq), 
...         sorted(zip(days, IQ), key=lambda p: p[0], reverse=True)))
95.0

The above is not pretty, so let's refactor it a bit:

from collections import namedtuple
from operator    import itemgetter

def smooth(iq_data, alpha=1, today=None):
    """Perform exponential smoothing with factor `alpha`.

    Time period is a day.
    Each time period the value of `iq` drops `alpha` times.
    The most recent data is the most valuable one.
    """
    assert 0 < alpha <= 1

    if alpha == 1: # no smoothing
        return sum(map(itemgetter(1), iq_data))

    if today is None:
        today = max(map(itemgetter(0), iq_data))

    return sum(alpha**((today - date).days) * iq for date, iq in iq_data)

IQData = namedtuple("IQData", "date iq")

if __name__ == "__main__":
    from datetime import date

    days = [date(2008,1,1), date(2008,1,2), date(2008,1,7)]
    IQ = [110, 105, 90]
    iqdata = list(map(IQData, days, IQ))
    print("\n".join(map(str, iqdata)))

    print(smooth(iqdata, alpha=0.5))

Example:

$ python26 smooth.py
IQData(date=datetime.date(2008, 1, 1), iq=110)
IQData(date=datetime.date(2008, 1, 2), iq=105)
IQData(date=datetime.date(2008, 1, 7), iq=90)
95.0

I'm always calculating EMAs with Pandas:

Here is an example how to do it:

import pandas as pd
import numpy as np

def ema(values, period):
    values = np.array(values)
    return pd.ewma(values, span=period)[-1]

values = [9, 5, 10, 16, 5]
period = 5

print ema(values, period)

More infos about Pandas EWMA:

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.ewma.html