Calculating pow(a,b) mod n
You can try this C++ code. I've used it with 32 and 64-bit integers. I'm sure I got this from SO.
template <typename T>
T modpow(T base, T exp, T modulus) {
base %= modulus;
T result = 1;
while (exp > 0) {
if (exp & 1) result = (result * base) % modulus;
base = (base * base) % modulus;
exp >>= 1;
}
return result;
}
You can find this algorithm and related discussion in the literature on p. 244 of
Schneier, Bruce (1996). Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second Edition (2nd ed.). Wiley. ISBN 978-0-471-11709-4.
Note that the multiplications result * base
and base * base
are subject to overflow in this simplified version. If the modulus is more than half the width of T
(i.e. more than the square root of the maximum T
value), then one should use a suitable modular multiplication algorithm instead - see the answers to Ways to do modulo multiplication with primitive types.
In order to calculate pow(a,b) % n
to be used for RSA decryption, the best algorithm I came across is Primality Testing 1) which is as follows:
int modulo(int a, int b, int n){
long long x=1, y=a;
while (b > 0) {
if (b%2 == 1) {
x = (x*y) % n; // multiplying with base
}
y = (y*y) % n; // squaring the base
b /= 2;
}
return x % n;
}
See below reference for more details.
1) Primality Testing : Non-deterministic Algorithms – topcoder
Usually it's something like this:
while (b)
{
if (b % 2) { res = (res * a) % n; }
a = (a * a) % n;
b /= 2;
}
return res;