Calculation of limit without stirling approximation

If we set $\left(1+\frac1n\right)^n=1$ for $n=0$, we have $$ \begin{align} \left.\frac{(n+1)^{n+1}}{e^{n+1}\,(n+1)!}\middle/\frac{n^n}{e^n\,n!}\right. &=\frac{\left(1+\frac1n\right)^n}{e} \end{align} $$ In this answer, it is shown that $$ e-\left(1+\frac1n\right)^n\ge\frac e{2n+3} $$ which implies that $$ \frac{\left(1+\frac1n\right)^n}{e}\le\frac{2n+2}{2n+3} $$ Therefore, $$ \begin{align} \frac{n^n}{e^n\,n!} &=\prod_{k=0}^{n-1}\frac{\left(1+\frac1k\right)^k}{e}\\ &\le\prod_{k=0}^{n-1}\frac{2k+2}{2k+3}\\ &\le\prod_{k=0}^{n-1}\left(\frac{2k+2}{2k+3}\frac{2k+3}{2k+4}\right)^{1/2}\\ &=\left(\prod_{k=0}^{n-1}\frac{k+1}{k+2}\right)^{1/2}\\ &=\frac1{\sqrt{n+1}} \end{align} $$ Thus, $$ \begin{align} \lim_{n\to\infty}\frac{n^n}{e^n\,n!} &\le\lim_{n\to\infty}\frac1{\sqrt{n+1}}\\ &=0 \end{align} $$


We can do it by proving Stirling's theorem without the constant. We need the following Lemma which has appeared here before, and is easily proven by clever partial integration:

Lemma. If $a<b$ and $f(a)=f(b)=0$ then $$\int_a^b f(t)\>dt=-{(b-a)^3\over12}f''(\xi)$$ for some $\xi\in\ ]a,b[\ $.

We now the compute the integral $$\int_1^n \log t\>dt=n\log n -n+1\tag{1}$$ using the trapezoidal rule: $$\int_1^n \log t\>dt=0+\sum_{k=2}^{n-1}\log k +{1\over2}\log n+R_n=\log\bigl(n!\bigr)-{1\over2}\log n+R_n\ .\tag{2}$$ The error $R_n$ is positive, since $\log$ is concave. The difference $f$ between $\log$ and the interpolating piecewise linear function is $=0$ at all integer points, and its second derivative in between these points is given by $$f''(t)=\log''(t)=-{1\over t^2}\ .$$ It then follows from the above Lemma that $$0<R_n=\sum_{k=1}^{n-1}\int_k^{k+1}f(t)\>dt\leq{1\over12}\sum_{k=1}^{n-1}{1\over k^2}<{\pi^2\over72}<1\ .$$ Using $(1)$ and $(2)$ we now obtain $$n(\log n-1)-\log\bigl(n!\bigr)=-{1\over2}\log n +R_n-1\to-\infty\qquad(n\to\infty)\ ,$$ which is what you wanted.


The ratio of terms $n+1$ and $n$ is $$\frac1e\left(1+\frac1n\right)^n.$$

By the binomial theorem,

$$\left(1+\frac1n\right)^n=1+\frac nn\frac{n(n-1)}{2n^2}+\frac{n(n-1)(n-2)}{3!n^3}\cdots<2+\frac{n-1}n\left(\frac12+\frac1{3!}\cdots\right)\\=2+\frac{n-1}n(e-2),$$ so that $$\frac1e\left(1+\frac1n\right)^n<1-\frac{e-2}{en}<1-\frac1{4n}.$$

Then by telescoping the product of the ratios tends to $0$.


UPDATE: simpler derivation.

The function $(1+x)^{1/x}$ is convex between $0$ and $1$, so that

$$\frac1e(1+x)^{1/x}\le 1-(1-\frac2e)x<1-\frac x4,$$ and $$\frac{n^n}{e^nn!}=\prod_{k=1}^{n-1}\frac{(k+1)^{k+1}}{e^{k+1}(k+1)!}\frac{e^kk!}{k^k}=\prod_{k=1}^{n-1}\frac1e\left(1+\frac1k\right)^k<\prod_{k=1}^{n-1}\left(1-\frac1{4k}\right),$$which converges to $0$.