Calling template function without <>; type inference

the conclusion be to avoid functions with return and more prefer void functions that return via a reference when writing templates

No, why? What do you gain? Only type inference (so less code to write). But you lose the much more logical syntax of assigning a value (and consequently more code to write). So one thing gained, another lost. I don’t see the benefit in general.

It may even help to have to specify the template type explicitly: consider the case of lexical_cast. Not specifying the return template type would be confusing.


Overload resolution is done only based on function arguments; the return value is not used at all. If the return type cannot be determined based on the arguments, you will have to specify it explicitly.

I would not go down the path of "returning" a value through a reference parameter; that makes the calling code unclear. For example, I'd prefer this:

double x = round<double>(y);

over this:

double x;
round(x, y);

because in the latter case, it's easy to confuse input and output, and it's not at all clear that x is being modified.

In the particular case of round, you probably need only one or two types for TOut anyway, so you could just leave that template argument out:

template<typename TIn>
int roundToInt(TIn v) {
    return (int)(v + 0.5);
}

I find roundToInt(x) a little clearer than round<int>(x) because it's clear what the int type is used for.


Let me add to what the others have said by saying you should prefer C++ casting over C-style casting.

vret = (TOut)(vin + 0.5);

versus

vret = static_cast<TOut>(vin + 0.5);

static cast will always fail if you try to convert unrelated types. This can help with debugging.