camino euleriano code example
Example: sendero euleriano
// Implemetación en c++
#include <iostream>
#include <string.h>
#include <algorithm>
#include <list>
using namespace std;
// Clase para representar el grafo
class Graph
{
private:
int V; // Nº de vertices
list<int> *adj; //vector dinámico
public:
// Constructor y destructor
Graph(int V) { this->V = V; adj = new list<int>[V]; }
~Graph() { delete [] adj; }
void addEdge(int u, int v) { adj[u].push_back(v); adj[v].push_back(u); }
void rmvEdge(int u, int v);
void printEulerTour();
void printEulerUtil(int s);
int DFSCount(int v, bool visited[]);
bool isValidNextEdge(int u, int v);
};
void Graph::printEulerTour()
{
int u = 0;
for (int i = 0; i < V; i++)
if (adj[i].size() & 1)
{ u = i; break; }
printEulerUtil(u);
cout << endl;
}
void Graph::printEulerUtil(int u)
{
list<int>::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
{
int v = *i;
if (v != -1 && isValidNextEdge(u, v))
{
cout << u << "-" << v << " ";
rmvEdge(u, v);
printEulerUtil(v);
}
}
}
bool Graph::isValidNextEdge(int u, int v)
{
int count = 0;
list<int>::iterator i;
for (i = adj[u].begin(); i != adj[u].end(); ++i)
if (*i != -1)
count++;
if (count == 1)
return true;
bool visited[V];
memset(visited, false, V);
int count1 = DFSCount(u, visited);
rmvEdge(u, v);
memset(visited, false, V);
int count2 = DFSCount(u, visited);
addEdge(u, v);
return (count1 > count2)? false: true;
}
void Graph::rmvEdge(int u, int v)
{
list<int>::iterator iv = find(adj[u].begin(), adj[u].end(), v);
*iv = -1;
list<int>::iterator iu = find(adj[v].begin(), adj[v].end(), u);
*iu = -1;
}
int Graph::DFSCount(int v, bool visited[])
{
// marcamos el actual
visited[v] = true;
int count = 1;
// Metodo recursivo
list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (*i != -1 && !visited[*i])
count += DFSCount(*i, visited);
return count;
}
int main()
{
// Ejemplos
Graph g1(4);
g1.addEdge(0, 1);
g1.addEdge(0, 2);
g1.addEdge(1, 2);
g1.addEdge(2, 3);
g1.printEulerTour();
Graph g2(3);
g2.addEdge(0, 1);
g2.addEdge(1, 2);
g2.addEdge(2, 0);
g2.printEulerTour();
Graph g3(5);
g3.addEdge(1, 0);
g3.addEdge(0, 2);
g3.addEdge(2, 1);
g3.addEdge(0, 3);
g3.addEdge(3, 4);
g3.addEdge(3, 2);
g3.addEdge(3, 1);
g3.addEdge(2, 4);
g3.printEulerTour();
return 0;
}