Can a complex number ever be considered 'bigger' or 'smaller' than a real number, or vice versa?
You can put (partial) orders on the complex numbers. One choice is to compare the real parts and ignore the complex ones. Another is to use the lexicographic order, comparing the real parts and then comparing the imaginary ones if the real parts are equal. Another is to use the modulus. There are many more. The distinction with the order on the reals (or subsets of the reals) is that the order relation is compatible with addition and multiplication. You can't do that in the complex numbers. The simple proof is to ask whether $i$ is greater or less than $0$. In either case, $i^2=-1$ should be greater than zero.
To compare two complex numbers, we usually look at their modulus: if $z = x+iy$, then the modulus of $z$ is $|z| := \sqrt{x^2 + y^2}$. Regarding $z$ as a point in the complex plane, the modulus of $z$ is the distance to the origin. We can now compare two complex numbers such as $5+2i$ and $3$: notice that $|5+2i| = \sqrt{29}$ and $|3| = 3$, so in this sense, $5+2i$ is `larger' (better to think: farther away from the origin) than $3$.
Since $\mathbb{R}\subset\mathbb{C}$, every $x\in\mathbb{R}$ can be written as $x + i\cdot 0$. Now if we prescribe the lexicographical (dictionary) ordering, we can compare them.
Let $z,w\in\mathbb{C}$ and $z = x+iy$ and $w=a+bi$. Then the lexicographical ordering is $z < w$ if $x<a$ or $x=a$ and $y<b$, $z = w$ if $x=a$ and $y=b$, and $z>w$ otherwise.