Can I make a plot with gradient filling?

How about this?

bankerPlot[data_] := ListLinePlot[
  data,
  AxesOrigin -> {0, 0},
  Prolog -> Polygon[Join[data, Reverse[data.DiagonalMatrix[{1, 0}]]],
    VertexColors -> Join[
      Blend[{Black, Blue}, #] & /@ Normalize[data[[All, 2]], Max],
      ConstantArray[Black, Length[data]]
      ]
    ],
  PlotStyle -> White,
  Background -> Black,
  AxesStyle -> White
  ]

bankerData = Transpose[{Range[100], Accumulate[RandomReal[{-1, 1}, 100]] + 10}];
bankerPlot[bankerData]

bankerPlot output


For plotting a continuous function, you could do something like this:

f[x_] := (1 + Cos[5 x]/2) Sin[x] 

ParametricPlot[{x, f[x] y}, {x, 0, Pi}, {y, 0, 1},
 PlotPoints -> 30,
 ColorFunction -> (Blend[{Black, Blue, White}, #2] &), Mesh -> None, 
 AspectRatio -> 1/GoldenRatio]

Mathematica graphics

Edit

This method can be used for plotting a list of points as well by interpolating the points first, e.g.

pts1 = RandomReal[10, 100];

interpol = Interpolation[pts1, InterpolationOrder -> 1];

ParametricPlot[{x, interpol[x] y}, {x, 1, Length[pts1]}, {y, 0, 1},
 ColorFunction -> (Blend[{Black, Blue, White}, #2] &), Mesh -> None, 
 AspectRatio -> 1/GoldenRatio]

Mathematica graphics


Here's a modification of Heike's ParametricPlot approach, using textures instead of ColorFunction.

pts1 = RandomReal[10, 100];

interpol = Interpolation[pts1, InterpolationOrder -> 1];

ParametricPlot[{u, interpol[u] v}, {u, 1, Length[pts1]}, {v, 0, 1}, 
 Mesh -> None, AspectRatio -> 1/GoldenRatio, 
 TextureCoordinateFunction -> ({#1, #2} &), 
 PlotStyle -> {Opacity[1], 
   Texture[Table[{{##}} & @@ Blend[{Black, Blue, White}, 1-i], 
      {i, 0, 1, 0.01}]]}]

enter image description here

I'm using a 1-pixel wide Image containing the black-blue-white gradient Heike used. (Actually, it doesn't have an Image head; it's just the ImageData.)

I'm also specifying that I want the texture to correspond to the $x$ and $y$ coordinates instead of the default of $u$ and $v$.

This approach allows us to generalize the gradient to something more complicated, or even an arbitrary image:

ParametricPlot[{u, interpol[u] v}, {u, 1, Length[pts1]}, {v, 0, 1}, 
 Mesh -> None, AspectRatio -> 1/GoldenRatio, 
 TextureCoordinateFunction -> ({#1, #2} &), 
 PlotStyle -> {Opacity[1], Texture[ExampleData[{"TestImage", "Lena"}]]}]

enter image description here