Can you outgolf me? (Cops section)

Seed, 5861 bytes, score = 5012 / 5861 = 0.85

The sequence is primes (A000040) with offset 1. a(1) = 2, a(2) = 3, a(3) = 5 etc.

106 4339425277766562922902283581834741289660008085947971671079664775075736459902652798498038280771739790213868067702391567527146683746696872737118568202495046682058807677834082334206717794057290386357040004038910321326390033894692316122893125849512049817771469697446796247656883761642659391998672259889315862253584980121050081936190889196979721443972131545258528161479083569474217100401074866410321578452749003295370495810488337344650619973376676577461877392643228932028285261311284691649403036725905675576380944186859525020321196255472295415627414823269713084816196540461818684672201926996228242729726187404845487167114556965625764494860789841409004737497250600337038738035289643512265772877903971230007222865264200102217827010958702813633039465646713707971175729900391272165457566364779628858903697222589748797809421482136725017988969980267265196209027326008642464190920825439635011414535065156799655809935871795742526416544853103823906918352472744460644939241345215614650110978624804796257165525598653433482592675123776747497586586903140407616610040250976121531777891358439091358523224019193934111409521776865798864774150127996987606796522094617839125169013781373842026970010007574244564780540958252950607459585834584855526028427463655493110963000525209314274839412714497954647707284352161251044088451086878301225167181712809612927720502228546704347274977503482518386819117870800284276687560241308964641752876311905619184965236937789822712948719170589044519552259399272657757694404103028213338440810122219269214268424256451648966039627998513353115348057963135398345514276156595104642595820063441019481255889600472121104059631555738973905087895006671206400595057069658845297458058584470727379036742268107372233190371861824194831387484478317333784774872796689435056263039565495723444232483369405079512770383639748492508848098080619713255928884946598796741958520788406091704951276729428229224292748702301286318784744573918534142896761450194446126776354892827260482520089107240497527796383449573487121759294618654056309957794765646022274249211113876873102681817500947681708211056388348991201016699342850495527766741633390367735662514559206616070479934780700857859919517187362382258597709910134111383911258731633002354208155277838257255571878219168563173495861133946240923601273185050088148273459064040178741322137494758164795598458780786653602794809987537740537018415433767449108362051063814315399931951925462073202072886716208053889630274798247936580024665863765351912184189125660586187615847325588786048095120241198943086897428919324650596915625795076460123743259068671341944912206659194476673792489442514470540309819938731582497982088632076086088279435186513066668502875362808653657423813387124496122632219269226944975782747969308509448942429277233562654639293567532567668357917753810024961683829653277391094269518376510962710057956994339018307344554672056556222387849272880157861877494719706801624724491116189525394408237355854147113614645956561900837121715298276123085019204014577395795131906357190097536924932784935203378709529040555114884933996346694363879974847691625806412083107877442577777402405491226347699452398189866905599648314105255526411599513768016126067224570735746339691839657336828937030584950250402550603260483421505256395736457980708347396132620971927806636308105501893575073944959824958733880580825249931469481777083600987966500968473202481877213198175820182125298036242272662171321630056435823478710070315022531849275633515412140708923196338877549535352180465031450246889723670908173572778497329815806296369714467774385173078365517895215622645081749679859298824530173433952201710212962315524645807786760255396609101229899503687886977229729747349967302227815724222900649259120496955396616388023947812556426182596252076072286860171961582235043470190275528327438941205680729222092142315348205283459886659277456757338926863444370956987436702675569004062857510888080701482282900718067707825890168959050535970636214821273965900140346587802750221148933877600652180282267212515086387728695565345543441575183083490091817551421389124038251086513387106526847199935776240422217886407416027185332010280169564289345500368555274327733580514983967396271907637608170801013991375555069570288329399237332712790289521766624379537848996471168926519414464863388365890585061582441222989105844636887033599262856636618609644981203616618819656730174147506366895579518927217154437260067784133452192099436160162797896733220282837763342940047719962882720310397266700665603774047807673735452896542215047419894928360985667680051383584281780118001522220147385455276205847620842066894760474814386271419398361771509559702341442734727141312211989794380570433135781896005067541537095546614638001539678780066976441749790924521292297473522803115912791790379839635473194794843511234906415092857115568242448079933264380632375450234146479596225552359821776361923588178896354011117990551249184457345201223244319766597339520899930287542362386381372955844126876031262062731835081542890548095759704856479235361996156162229417953890962902505112862674541020677153054937034038823204321411753183982406667628845943390275194956321260584953509501973880059966268311741789559039618821364775407403947492157311255310143283125490988585303127442698159113924719563571459841025286208880511134222538431747221840824203312684036627017414295981003169360893015436564680773233890198618904647085929678054127680367983802905553144716598061593632352021737488422700265144189474970515439967472618438343180405852959047054139020095303915498443045344690691354304662161461750826840689185141612937350984288238847592910919431788170821390987459951181698659544772214696392241600642992000900364649438402093845534643663733216626212187314397293309505677932731383013397665193960914949915855970134736764497124186701371371881061763702617034928084811708964018610410971938419410791443362686750151572343348438861493025667676713

The Befunge-98 programs were tested with this interpreter.

Solution:

62 92671758747582594731336103958852355343308794409787718910287760272065096600068486400261521203099179296478278113800406388237579729434074471528101978922110199511009255327569364221068648720732186414156697930516237153253745234146558781777104311285708042469572129997820696177040412749585193035961972308024909384538547357820271391461203855177879703963391294547499579588457829374981409596253284387318191154655397249791533591896711203680125312645807793061567274893660125978667479654664977040722935418267606762108334976561590548772755653088127344268269983549959628254712562135604114391709222466418283973346968039685907258341712475120187026707300070769277380483828579629391533415119380882514570806683534933872011332303802477012040660361613689139008855327957705058672774790021218679288003003953301651226513713984857174365383390364296326192225244927665294515693697694918935732394438095829822147927645949273829493190176397786165741955566462476231578299385726525505407052332068778469428870102672560545990553686935179657522071350801304923521681690806124866463401094200444841941834667455137491597902735287855498886460945851544063102556545691787612423033525861765804657417395955322217721677429700032333887700477665924915189639029356029794151144702621112140447347270986003871777552705154393697526621456025974679633450745341583481291685834000335168972075093212539251102818038917942913311300883294570091156661153874804268309393591292001433191276766990017144340677002050765359295580546228905861008474333888247511333039470305173620221481374758754343560048199433044290376988914313248904786418615239832295700238599693805552407166251501198275363727855984193340187485162706203747898935844148656997727555488455764358003951396850496841760348138874901474547533715922587211143833052692993182786162665394965914056238514702648647904702501871758140636318131208564891924287008550289224318358936576352473100482724524675417108540029486047223784009872784235439805791496176981701859374772960623187174667015174831665360382067784289660747175586412802848517818731070091826086320292632019033525579172665790335268736167170506003176022610987557889205903933680970434653929602313812168432779881423599218075810156457004870273456214668951969634696002866863369645150677406566613367576078149751561615160777945725724620047443832859087000460506626402089973036918592151204779260519899343451226942874643654023265001514280212345984966126290887141500898797940093805650642580450926977375576911590855135774911449619005627413806680159169643085790457809525639117624947749945044091079624534522626841372604654172723500062361904864176709974716350878399949908529715899937417421315012456868864220900338162700464737416505300734198857624165994112815507157337074226022552948626042899845891195024145834980781844015548398775284084741665926642729256313545870065439195137107807599897817556866239630270351410298105991743248934632486671734759038305157913444368204353943206369388913837519310828223093441519335111533635957953613758894822654736600526811789875376813119426924959017038654104216784121093688306563643326587639486472221258233221666454164763738631579246841130247019172136121041002571694545781948282785399495873501148416357057693713305042834246973535325571882393889489457235864027134943913383832461393499203435931881991959787045205816313165984531168137210464591653390767999403651750434079431253272021002273680565508340556736474927770564408343360602057949991306130979603289667991356237787412616305022971197507815004141825394838946364485315703051195195566893733123391158803413838803831010122718476800229685100410524315094662633390222854924884579083098055980542607258318868514903610787510921796157291630993618714015755412239872758443166948699744841899868754369627081727143351807615097715679652005998467491609044596871312950634152039807480021814406950780706131231897491212637759991818212542181136384052857191779658528790835620632765143337026858373660057972387266312097135260115742458792764792668883627539340807572869610941154184473111399152964165437112713815173281951728792354570851956468302291939952274005357250989986640723863408051924618400882866539701190471828299028566020683682444415198672952980294639217217840535225987439355834087974716313911977302809235338769491339553247328065401203243450045946392960085318343121705830317674151229536850726617093615850507955559652374337057819549481320081981520577039493601331233500403284295119207704095876958023271178964331413629547646937335760969491450824461526563643617594783473684358594189269252499897162333533284912320654686655888508024970105099967896167541978181602786701854274646885561632089896312016789257459673121974866871919820865433343707787147414982407950775979279255414469970743690769124215210050618943726165676550098723299244096267839544684847323547847832349290874282817429866612456451105673214159820212156069771415582214200701894487126822756864305461967035982308878073752362075553218935807632264803200753661147341613284071218919438723527468202903770806766095252957940538229987302177328543423522712562396242285027178395886649344

Jelly, 5 bytes, score 0.8 (4 / 5) [cracked!]

R²Sƽ

Computes A127721.

Try it online!


Here's the solution:

RÆḊḞ
  • implicitly take input n
  • R: list from [1, 2, ..., n]
  • ÆḊ: In our case, this will actually return the square root of the sum of squares (which may be useful in future golfing)!
  • : floor the result.

The documentation for ÆḊ reads:

ÆḊ: Determinant, extended to non-square matrices.

The key is extended to non-square matrices. The "determinant" of a non-square matrix is usually undefined, but one reasonable definition is sqrt(det(A A^T)) (which for a square matrix reduces to |det(A)|). In our case, A A^T is a 1 x 1 matrix containing the sum of squares. The square root of the determinant of that gives us exactly what we need to shave off the last byte!


Retina, 28 bytes, score = 0.9286... (26/28), cracked by feersum

.+
$*
^$|^((^|\3)(^.|\1))*.$

Computes A192687, (offset = 0).

Try it online! (The first line enables a linefeed-separated test suite.)

This is the difference between Hofstadter's male and female sequences. (Relevant PPCG challenge.)

This was my original code:

.+
$*
^((^.|\3)(\1)|){2,}$

This answer was a bit of a gamble anyway, because the actual solution is based on a regex I announced to be the shortest known Fibonacci-testing regex in chat a few months ago. Luckily, no one seemed to remember that. :)