Catch and compute overflow during multiplication of two large integers
The idea is to use following fact which is true for integral operation:
a*b > c
if and only if a > c/b
/
is integral division here.
The pseudocode to check against overflow for positive numbers follows:
if (a > max_int64 / b) then "overflow" else "ok".
To handle zeroes and negative numbers you should add more checks.
C code for non-negative a
and b
follows:
if (b > 0 && a > 18446744073709551615 / b) {
// overflow handling
}; else {
c = a * b;
}
Note:
18446744073709551615 == (1<<64)-1
To calculate carry we can use approach to split number into two 32-digits and multiply them as we do this on the paper. We need to split numbers to avoid overflow.
Code follows:
// split input numbers into 32-bit digits
uint64_t a0 = a & ((1LL<<32)-1);
uint64_t a1 = a >> 32;
uint64_t b0 = b & ((1LL<<32)-1);
uint64_t b1 = b >> 32;
// The following 3 lines of code is to calculate the carry of d1
// (d1 - 32-bit second digit of result, and it can be calculated as d1=d11+d12),
// but to avoid overflow.
// Actually rewriting the following 2 lines:
// uint64_t d1 = (a0 * b0 >> 32) + a1 * b0 + a0 * b1;
// uint64_t c1 = d1 >> 32;
uint64_t d11 = a1 * b0 + (a0 * b0 >> 32);
uint64_t d12 = a0 * b1;
uint64_t c1 = (d11 > 18446744073709551615 - d12) ? 1 : 0;
uint64_t d2 = a1 * b1 + c1;
uint64_t carry = d2; // needed carry stored here
A version that also works when a == 0:
x = a * b;
if (a != 0 && x / a != b) {
// overflow handling
}
1. Detecting the overflow:
x = a * b;
if (a != 0 && x / a != b) {
// overflow handling
}
Edit: Fixed division by 0
(thanks Mark!)
2. Computing the carry is quite involved. One approach is to split both operands into half-words, then apply long multiplication to the half-words:
uint64_t hi(uint64_t x) {
return x >> 32;
}
uint64_t lo(uint64_t x) {
return ((1ULL << 32) - 1) & x;
}
void multiply(uint64_t a, uint64_t b) {
// actually uint32_t would do, but the casting is annoying
uint64_t s0, s1, s2, s3;
uint64_t x = lo(a) * lo(b);
s0 = lo(x);
x = hi(a) * lo(b) + hi(x);
s1 = lo(x);
s2 = hi(x);
x = s1 + lo(a) * hi(b);
s1 = lo(x);
x = s2 + hi(a) * hi(b) + hi(x);
s2 = lo(x);
s3 = hi(x);
uint64_t result = s1 << 32 | s0;
uint64_t carry = s3 << 32 | s2;
}
To see that none of the partial sums themselves can overflow, we consider the worst case:
x = s2 + hi(a) * hi(b) + hi(x)
Let B = 1 << 32
. We then have
x <= (B - 1) + (B - 1)(B - 1) + (B - 1)
<= B*B - 1
< B*B
I believe this will work - at least it handles Sjlver's test case. Aside from that, it is untested (and might not even compile, as I don't have a C++ compiler at hand anymore).
Although there have been several other answers to this question, I several of them have code that is completely untested, and thus far no one has adequately compared the different possible options.
For that reason, I wrote and tested several possible implementations (the last one is based on this code from OpenBSD, discussed on Reddit here). Here's the code:
/* Multiply with overflow checking, emulating clang's builtin function
*
* __builtin_umull_overflow
*
* This code benchmarks five possible schemes for doing so.
*/
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <limits.h>
#ifndef BOOL
#define BOOL int
#endif
// Option 1, check for overflow a wider type
// - Often fastest and the least code, especially on modern compilers
// - When long is a 64-bit int, requires compiler support for 128-bits
// ints (requires GCC >= 3.0 or Clang)
#if LONG_BIT > 32
typedef __uint128_t long_overflow_t ;
#else
typedef uint64_t long_overflow_t;
#endif
BOOL
umull_overflow1(unsigned long lhs, unsigned long rhs, unsigned long* result)
{
long_overflow_t prod = (long_overflow_t)lhs * (long_overflow_t)rhs;
*result = (unsigned long) prod;
return (prod >> LONG_BIT) != 0;
}
// Option 2, perform long multiplication using a smaller type
// - Sometimes the fastest (e.g., when mulitply on longs is a library
// call).
// - Performs at most three multiplies, and sometimes only performs one.
// - Highly portable code; works no matter how many bits unsigned long is
BOOL
umull_overflow2(unsigned long lhs, unsigned long rhs, unsigned long* result)
{
const unsigned long HALFSIZE_MAX = (1ul << LONG_BIT/2) - 1ul;
unsigned long lhs_high = lhs >> LONG_BIT/2;
unsigned long lhs_low = lhs & HALFSIZE_MAX;
unsigned long rhs_high = rhs >> LONG_BIT/2;
unsigned long rhs_low = rhs & HALFSIZE_MAX;
unsigned long bot_bits = lhs_low * rhs_low;
if (!(lhs_high || rhs_high)) {
*result = bot_bits;
return 0;
}
BOOL overflowed = lhs_high && rhs_high;
unsigned long mid_bits1 = lhs_low * rhs_high;
unsigned long mid_bits2 = lhs_high * rhs_low;
*result = bot_bits + ((mid_bits1+mid_bits2) << LONG_BIT/2);
return overflowed || *result < bot_bits
|| (mid_bits1 >> LONG_BIT/2) != 0
|| (mid_bits2 >> LONG_BIT/2) != 0;
}
// Option 3, perform long multiplication using a smaller type (this code is
// very similar to option 2, but calculates overflow using a different but
// equivalent method).
// - Sometimes the fastest (e.g., when mulitply on longs is a library
// call; clang likes this code).
// - Performs at most three multiplies, and sometimes only performs one.
// - Highly portable code; works no matter how many bits unsigned long is
BOOL
umull_overflow3(unsigned long lhs, unsigned long rhs, unsigned long* result)
{
const unsigned long HALFSIZE_MAX = (1ul << LONG_BIT/2) - 1ul;
unsigned long lhs_high = lhs >> LONG_BIT/2;
unsigned long lhs_low = lhs & HALFSIZE_MAX;
unsigned long rhs_high = rhs >> LONG_BIT/2;
unsigned long rhs_low = rhs & HALFSIZE_MAX;
unsigned long lowbits = lhs_low * rhs_low;
if (!(lhs_high || rhs_high)) {
*result = lowbits;
return 0;
}
BOOL overflowed = lhs_high && rhs_high;
unsigned long midbits1 = lhs_low * rhs_high;
unsigned long midbits2 = lhs_high * rhs_low;
unsigned long midbits = midbits1 + midbits2;
overflowed = overflowed || midbits < midbits1 || midbits > HALFSIZE_MAX;
unsigned long product = lowbits + (midbits << LONG_BIT/2);
overflowed = overflowed || product < lowbits;
*result = product;
return overflowed;
}
// Option 4, checks for overflow using division
// - Checks for overflow using division
// - Division is slow, especially if it is a library call
BOOL
umull_overflow4(unsigned long lhs, unsigned long rhs, unsigned long* result)
{
*result = lhs * rhs;
return rhs > 0 && (SIZE_MAX / rhs) < lhs;
}
// Option 5, checks for overflow using division
// - Checks for overflow using division
// - Avoids division when the numbers are "small enough" to trivially
// rule out overflow
// - Division is slow, especially if it is a library call
BOOL
umull_overflow5(unsigned long lhs, unsigned long rhs, unsigned long* result)
{
const unsigned long MUL_NO_OVERFLOW = (1ul << LONG_BIT/2) - 1ul;
*result = lhs * rhs;
return (lhs >= MUL_NO_OVERFLOW || rhs >= MUL_NO_OVERFLOW) &&
rhs > 0 && SIZE_MAX / rhs < lhs;
}
#ifndef umull_overflow
#define umull_overflow2
#endif
/*
* This benchmark code performs a multiply at all bit sizes,
* essentially assuming that sizes are logarithmically distributed.
*/
int main()
{
unsigned long i, j, k;
int count = 0;
unsigned long mult;
unsigned long total = 0;
for (k = 0; k < 0x40000000 / LONG_BIT / LONG_BIT; ++k)
for (i = 0; i != LONG_MAX; i = i*2+1)
for (j = 0; j != LONG_MAX; j = j*2+1) {
count += umull_overflow(i+k, j+k, &mult);
total += mult;
}
printf("%d overflows (total %lu)\n", count, total);
}
Here are the results, testing with various compilers and systems I have (in this case, all testing was done on OS X, but results should be similar on BSD or Linux systems):
+------------------+----------+----------+----------+----------+----------+
| | Option 1 | Option 2 | Option 3 | Option 4 | Option 5 |
| | BigInt | LngMult1 | LngMult2 | Div | OptDiv |
+------------------+----------+----------+----------+----------+----------+
| Clang 3.5 i386 | 1.610 | 3.217 | 3.129 | 4.405 | 4.398 |
| GCC 4.9.0 i386 | 1.488 | 3.469 | 5.853 | 4.704 | 4.712 |
| GCC 4.2.1 i386 | 2.842 | 4.022 | 3.629 | 4.160 | 4.696 |
| GCC 4.2.1 PPC32 | 8.227 | 7.756 | 7.242 | 20.632 | 20.481 |
| GCC 3.3 PPC32 | 5.684 | 9.804 | 11.525 | 21.734 | 22.517 |
+------------------+----------+----------+----------+----------+----------+
| Clang 3.5 x86_64 | 1.584 | 2.472 | 2.449 | 9.246 | 7.280 |
| GCC 4.9 x86_64 | 1.414 | 2.623 | 4.327 | 9.047 | 7.538 |
| GCC 4.2.1 x86_64 | 2.143 | 2.618 | 2.750 | 9.510 | 7.389 |
| GCC 4.2.1 PPC64 | 13.178 | 8.994 | 8.567 | 37.504 | 29.851 |
+------------------+----------+----------+----------+----------+----------+
Based on these results, we can draw a few conclusions:
- Clearly, the division-based approach, although simple and portable, is slow.
- No technique is a clear winner in all cases.
- On modern compilers, the use-a-larger-int approach is best, if you can use it
- On older compilers, the long-multiplication approach is best
- Surprisingly, GCC 4.9.0 has performance regressions over GCC 4.2.1, and GCC 4.2.1 has performance regressions over GCC 3.3