Charge distribution on a conducting solid disc
The charge density would not be uniform. It is highest at points and sharp edges, where (in theory) it tends towards infinity. For a disc the highest charge density would be at the rim. See Charge distribution on conductors and Why does charge accumulate at points?
Regarding this problem, Andrew Zangwill in Application 5.1 of his book on Modern Electrodynamics states that
There is no truly simple way to calculate the surface charge density for a charged, conducting disk. In this Application we use a method which regards the disk as the limiting case of a squashed ellipsoid...
He proceeds to obtain the result $$\sigma = \frac{Q}{4\pi R \sqrt{R^2-r^2}}$$