Check for words from list and remove those words in pandas dataframe column
Try this:
In [98]: pat = r'\b(?:{})\b'.format('|'.join(remove_words))
In [99]: pat
Out[99]: '\\b(?:abc|def|pls)\\b'
In [100]: df['new'] = df['string'].str.replace(pat, '')
In [101]: df
Out[101]:
string new
0 abc stack overflow stack overflow
1 abc123 abc123
2 def comedy comedy
3 definitely definitely
4 pls lkjh lkjh
5 pls1234 pls1234
Totally taking @MaxU's pattern!
We can use pd.DataFrame.replace
by setting the regex
parameter to True
and passing a dictionary of dictionaries that specifies the pattern and what to replace with for each column.
pat = '|'.join([r'\b{}\b'.format(w) for w in remove_words])
df.assign(new=df.replace(dict(string={pat: ''}), regex=True))
string new
0 abc stack overflow stack overflow
1 abc123 abc123
2 def comedy comedy
3 definitely definitely
4 pls lkjh lkjh
5 pls1234 pls1234