Check if string is in a pandas dataframe
a['Names'].str.contains('Mel')
will return an indicator vector of boolean values of size len(BabyDataSet)
Therefore, you can use
mel_count=a['Names'].str.contains('Mel').sum()
if mel_count>0:
print ("There are {m} Mels".format(m=mel_count))
Or any()
, if you don't care how many records match your query
if a['Names'].str.contains('Mel').any():
print ("Mel is there")
OP meant to find out whether the string 'Mel' exists in a particular column, not contained in any string in the column. Therefore the use of contains is not needed, and is not efficient.
A simple equals-to is enough:
df = pd.DataFrame({"names": ["Melvin", "Mel", "Me", "Mel", "A.Mel"]})
mel_count = (df['names'] == 'Mel').sum()
print("There are {num} instances of 'Mel'. ".format(num=mel_count))
mel_exists = (df['names'] == 'Mel').any()
print("'Mel' exists in the dataframe.".format(num=mel_exists))
mel_exists2 = 'Mel' in df['names'].values
print("'Mel' is in the dataframe: " + str(mel_exists2))
Prints:
There are 2 instances of 'Mel'.
'Mel' exists in the dataframe.
'Mel' is in the dataframe: True
You should use any()
In [98]: a['Names'].str.contains('Mel').any()
Out[98]: True
In [99]: if a['Names'].str.contains('Mel').any():
....: print "Mel is there"
....:
Mel is there
a['Names'].str.contains('Mel')
gives you a series of bool values
In [100]: a['Names'].str.contains('Mel')
Out[100]:
0 False
1 False
2 False
3 False
4 True
Name: Names, dtype: bool