Chern classes of the sheaf of LOG differentials

From the exact sequence $$0\rightarrow \Omega ^1_X\rightarrow \Omega ^1_X(\log D)\rightarrow \mathcal{O}_D\rightarrow 0$$you get $\ c(\Omega ^1_X(\log D))=c(\Omega ^1_X).c(\mathcal{O}_D)=c(\Omega ^1_X).(1-[D])^{-1}$, hence $$c_p(\Omega ^1_X(\log D))=c_p(\Omega ^1_X)+c_{p-1}(\Omega ^1_X).[D]+\ldots +[D]^p\ .$$


Let $D_1,\ldots,D_m$ be the irreducible components of $D$. The reasoning in Prp 2.3 in MR1240599 gives an exact sequence $$0\longrightarrow \Omega_X^1\longrightarrow \Omega_X^1(\log D)\longrightarrow\bigoplus_{i=1}^m{\mathcal O}_{D_i}\longrightarrow 0.$$ Thus, the total Chern class is given by $$c\big(\Omega_X^1(\log D)\big)=c(\Omega_X^1)\Big/\prod_{i=1}^m\big(1-[D_i]\big).$$ Mohammad's formula for the first Chern class is correct.