Clarification on the Decimal type in Python

The Decimal class is best for financial type addition, subtraction multiplication, division type problems:

>>> (1.1+2.2-3.3)*10000000000000000000
4440.892098500626                            # relevant for government invoices...
>>> import decimal
>>> D=decimal.Decimal
>>> (D('1.1')+D('2.2')-D('3.3'))*10000000000000000000
Decimal('0.0')

The Fraction module works well with the rational number problem domain you describe:

>>> from fractions import Fraction
>>> f = Fraction(1) / Fraction(3)
>>> f
Fraction(1, 3)
>>> f * 3 < 1
False
>>> f * 3 == 1
True

For pure multi precision floating point for scientific work, consider mpmath.

If your problem can be held to the symbolic realm, consider sympy. Here is how you would handle the 1/3 issue:

>>> sympy.sympify('1/3')*3
1
>>> (sympy.sympify('1/3')*3) == 1
True

Sympy uses mpmath for arbitrary precision floating point, includes the ability to handle rational numbers and irrational numbers symbolically.

Consider the pure floating point representation of the irrational value of √2:

>>> math.sqrt(2)
1.4142135623730951
>>> math.sqrt(2)*math.sqrt(2)
2.0000000000000004
>>> math.sqrt(2)*math.sqrt(2)==2
False

Compare to sympy:

>>> sympy.sqrt(2)
sqrt(2)                              # treated symbolically
>>> sympy.sqrt(2)*sympy.sqrt(2)==2
True

You can also reduce values:

>>> import sympy
>>> sympy.sqrt(8)
2*sqrt(2)                            # √8 == √(4 x 2) == 2*√2...

However, you can see issues with Sympy similar to straight floating point if not careful:

>>> 1.1+2.2-3.3
4.440892098500626e-16
>>> sympy.sympify('1.1+2.2-3.3')
4.44089209850063e-16                   # :-(

This is better done with Decimal:

>>> D('1.1')+D('2.2')-D('3.3')
Decimal('0.0')

Or using Fractions or Sympy and keeping values such as 1.1 as ratios:

>>> sympy.sympify('11/10+22/10-33/10')==0
True
>>> Fraction('1.1')+Fraction('2.2')-Fraction('3.3')==0
True

Or use Rational in sympy:

>>> frac=sympy.Rational
>>> frac('1.1')+frac('2.2')-frac('3.3')==0
True
>>> frac('1/3')*3
1

You can play with sympy live.


So, my question is: is there a way to have a Decimal type with an infinite precision?

No, since storing an irrational number would require infinite memory.

Where Decimal is useful is representing things like monetary amounts, where the values need to be exact and the precision is known a priori.

From the question, it is not entirely clear that Decimal is more appropriate for your use case than float.