Class method differences in Python: bound, unbound and static
When you call a class member, Python automatically uses a reference to the object as the first parameter. The variable self
actually means nothing, it's just a coding convention. You could call it gargaloo
if you wanted. That said, the call to method_two
would raise a TypeError
, because Python is automatically trying to pass a parameter (the reference to its parent object) to a method that was defined as having no parameters.
To actually make it work, you could append this to your class definition:
method_two = staticmethod(method_two)
or you could use the @staticmethod
function decorator.
Methods in Python are a very, very simple thing once you understood the basics of the descriptor system. Imagine the following class:
class C(object):
def foo(self):
pass
Now let's have a look at that class in the shell:
>>> C.foo
<unbound method C.foo>
>>> C.__dict__['foo']
<function foo at 0x17d05b0>
As you can see if you access the foo
attribute on the class you get back an unbound method, however inside the class storage (the dict) there is a function. Why's that? The reason for this is that the class of your class implements a __getattribute__
that resolves descriptors. Sounds complex, but is not. C.foo
is roughly equivalent to this code in that special case:
>>> C.__dict__['foo'].__get__(None, C)
<unbound method C.foo>
That's because functions have a __get__
method which makes them descriptors. If you have an instance of a class it's nearly the same, just that None
is the class instance:
>>> c = C()
>>> C.__dict__['foo'].__get__(c, C)
<bound method C.foo of <__main__.C object at 0x17bd4d0>>
Now why does Python do that? Because the method object binds the first parameter of a function to the instance of the class. That's where self comes from. Now sometimes you don't want your class to make a function a method, that's where staticmethod
comes into play:
class C(object):
@staticmethod
def foo():
pass
The staticmethod
decorator wraps your class and implements a dummy __get__
that returns the wrapped function as function and not as a method:
>>> C.__dict__['foo'].__get__(None, C)
<function foo at 0x17d0c30>
Hope that explains it.
In Python, there is a distinction between bound and unbound methods.
Basically, a call to a member function (like method_one
), a bound function
a_test.method_one()
is translated to
Test.method_one(a_test)
i.e. a call to an unbound method. Because of that, a call to your version of method_two
will fail with a TypeError
>>> a_test = Test()
>>> a_test.method_two()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: method_two() takes no arguments (1 given)
You can change the behavior of a method using a decorator
class Test(object):
def method_one(self):
print "Called method_one"
@staticmethod
def method_two():
print "Called method two"
The decorator tells the built-in default metaclass type
(the class of a class, cf. this question) to not create bound methods for method_two
.
Now, you can invoke static method both on an instance or on the class directly:
>>> a_test = Test()
>>> a_test.method_one()
Called method_one
>>> a_test.method_two()
Called method_two
>>> Test.method_two()
Called method_two
>>> class Class(object):
... def __init__(self):
... self.i = 0
... def instance_method(self):
... self.i += 1
... print self.i
... c = 0
... @classmethod
... def class_method(cls):
... cls.c += 1
... print cls.c
... @staticmethod
... def static_method(s):
... s += 1
... print s
...
>>> a = Class()
>>> a.class_method()
1
>>> Class.class_method() # The class shares this value across instances
2
>>> a.instance_method()
1
>>> Class.instance_method() # The class cannot use an instance method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unbound method instance_method() must be called with Class instance as first argument (got nothing instead)
>>> Class.instance_method(a)
2
>>> b = 0
>>> a.static_method(b)
1
>>> a.static_method(a.c) # Static method does not have direct access to
>>> # class or instance properties.
3
>>> Class.c # a.c above was passed by value and not by reference.
2
>>> a.c
2
>>> a.c = 5 # The connection between the instance
>>> Class.c # and its class is weak as seen here.
2
>>> Class.class_method()
3
>>> a.c
5