Classification of the positive integers not being the sum of four non-zero squares
page 140 in Conway's little book, $$ 1,3,5,9,11,17,29,41, \; 2 \cdot 4^m \; , \; 6 \cdot 4^m \; , \; 14 \cdot 4^m \; . $$ The proof is on the same page, with preparatory material in the previous few pages.
The first detail: any number $3 \pmod 8$ is the sum of three squares, meanwhile they must be odd squares, therefore nonzero. The square of any number that is divisible by $4$ becomes $0 \pmod 8.$ As a result, any number $6 \pmod 8$ is the sum of three squares, as $ (2A)^2 + B^2 + C^2,$ where $A,B,C$ must be odd squares, therefore nonzero.
10 June: Second detail: if $x^2 + y^2 + z^2 \equiv 0 \pmod 4,$ then $x,y,z$ are all even. This means that $12 \pmod{32}$ is the sum of three nonzero squares. Same for $24 \pmod{32}$
Some of my topograph answers, in order by question number. I got better with the diagrams as time went by. If you just look at these, not much will happen. If you draw some of your own examples, you will begin to understand.
================
BOOKS:
http://www.maths.ed.ac.uk/~aar/papers/conwaysens.pdf (Conway)
http://www.springer.com/us/book/9780387955872 (Stillwell)
https://www.math.cornell.edu/~hatcher/TN/TNbook.pdf (Hatcher)
http://bookstore.ams.org/mbk-105/ (Weissman)
==============
ANSWERS:
http://math.stackexchange.com/questions/81917/another-quadratic-diophantine-equation-how-do-i-proceed/144794#144794
http://math.stackexchange.com/questions/228356/how-to-find-solutions-of-x2-3y2-2/228405#228405
http://math.stackexchange.com/questions/342284/generate-solutions-of-quadratic-diophantine-equation/345128#345128
http://math.stackexchange.com/questions/487051/why-cant-the-alpertron-solve-this-pell-like-equation/487063#487063
http://math.stackexchange.com/questions/512621/finding-all-solutions-of-the-pell-type-equation-x2-5y2-4/512649#512649
http://math.stackexchange.com/questions/680972/if-m-n-in-mathbb-z-2-satisfies-3m2m-4n2n-then-m-n-is-a-perfect-square/686351#686351
http://math.stackexchange.com/questions/739752/how-to-solve-binary-form-ax2bxycy2-m-for-integer-and-rational-x-y/739765#739765 :::: 69 55
http://math.stackexchange.com/questions/742181/find-all-integer-solutions-for-the-equation-5x2-y2-4/756972#756972
http://math.stackexchange.com/questions/822503/positive-integer-n-such-that-2n1-3n1-are-both-perfect-squares/822517#822517
http://math.stackexchange.com/questions/1078450/maps-of-primitive-vectors-and-conways-river-has-anyone-built-this-in-sage/1078979#1078979
http://math.stackexchange.com/questions/1091310/infinitely-many-systems-of-23-consecutive-integers/1093382#1093382
http://math.stackexchange.com/questions/1132187/solve-the-following-equation-for-x-and-y/1132347#1132347 <1,-1,-1>
http://math.stackexchange.com/questions/1132799/finding-integers-of-the-form-3x2-xy-5y2-where-x-and-y-are-integers
http://math.stackexchange.com/questions/1221178/small-integral-representation-as-x2-2y2-in-pells-equation/1221280#1221280
http://math.stackexchange.com/questions/1404023/solving-the-equation-x2-7y2-3-over-integers/1404126#1404126
http://math.stackexchange.com/questions/1599211/solutions-to-diophantine-equations/1600010#1600010
http://math.stackexchange.com/questions/1667323/how-to-prove-that-the-roots-of-this-equation-are-integers/1667380#1667380
http://math.stackexchange.com/questions/1719280/does-the-pell-like-equation-x2-dy2-k-have-a-simple-recursion-like-x2-dy2
http://math.stackexchange.com/questions/1737385/if-d1-is-a-squarefree-integer-show-that-x2-dy2-c-gives-some-bounds-i/1737824#1737824 "seeds"
http://math.stackexchange.com/questions/1772594/find-all-natural-numbers-n-such-that-21n2-20-is-a-perfect-square/1773319#1773319
Is there a simple proof that if $(b-a)(b+a) = ab - 1$, then $a, b$ must be Fibonacci numbers? 1,1,-1; 1,11
To find all integral solutions of $3x^2 - 4y^2 = 11$