Closed-form of $\sum_{n=1}^\infty\frac{(-1)^{n+1}}{n}\Psi_3(n+1)=-\int_0^1\frac{\ln(1+x)\ln^3 x}{1-x}\,dx$

\begin{align} \sum^\infty_{n=1}\frac{(-1)^{n-1}\psi_3(n+1)}{n} &=-12\zeta(5)+\frac{45}{4}\zeta(4)\ln{2}+\frac{9}{4}\zeta(2)\zeta(3) \end{align}


Let $\displaystyle f(z)=\frac{\pi\csc(\pi z)\psi_3(-z)}{z}$. Then at the positive integers, \begin{align} \sum^\infty_{n=1}{\rm Res}(f,n) &=\sum^\infty_{n=1}\operatorname*{Res}_{z=n}\left[\frac{6(-1)^n}{z(z-n)^5}+\frac{6(-1)^n\zeta(2)}{z(z-n)^3}+(-1)^n\frac{(33/2)\zeta(4)+6H_n^{(4)}}{z(z-n)}\right]\\ &=6\sum^\infty_{n=1}\frac{(-1)^n}{n^5}+6\zeta(2)\sum^\infty_{n=1}\frac{(-1)^n}{n^3}+\frac{33}{2}\zeta(4)\sum^\infty_{n=1}\frac{(-1)^n}{n}+6\sum^\infty_{n=1}\frac{(-1)^nH_n^{(4)}}{n}\\ &=-\frac{45}{8}\zeta(5)-\frac{9}{2}\zeta(2)\zeta(3)-\frac{33}{2}\zeta(4)\ln{2}+6\sum^\infty_{n=1}\frac{(-1)^nH_n^{(4)}}{n} \end{align} At zero, $${\rm Res}(f,0)=24\zeta(5)$$ At the negative integers, \begin{align} \sum^\infty_{n=1}{\rm Res}(f,-n) &=\sum^\infty_{n=1}\frac{(-1)^{n-1}\psi_3(n)}{n}\\ &=6\zeta(4)\ln{2}-6\sum^\infty_{n=1}\frac{(-1)^{n-1}H_{n-1}^{(4)}}{n}\\ &=\frac{45}{8}\zeta(5)+6\zeta(4)\ln{2}+6\sum^\infty_{n=1}\frac{(-1)^{n}H_{n}^{(4)}}{n}\\ \end{align} Since the sum of residues is zero, \begin{align} 12\sum^\infty_{n=1}\frac{(-1)^{n}H_{n}^{(4)}}{n}=-24\zeta(5)+\frac{21}{2}\zeta(4)\ln{2}+\frac{9}{2}\zeta(2)\zeta(3)\\ \end{align} This implies that \begin{align} \sum^\infty_{n=1}\frac{(-1)^{n-1}\psi_3(n+1)}{n} &=-12\zeta(5)+\frac{45}{4}\zeta(4)\ln{2}+\frac{9}{4}\zeta(2)\zeta(3) \end{align} Refer to this paper if you have any doubts.


Edited: I have changed the approach as I realised that the use of summation is quite redundant (since the resulting sums have to be converted back to integrals). I feel that this new method is slightly cleaner and more systematic.


We can break up the integral into \begin{align} -&\int^1_0\frac{\ln^3{x}\ln(1+x)}{1-x}{\rm d}x\\ =&\int^1_0\frac{\ln^3{x}\ln(1-x)}{1-x}{\rm d}x-\int^1_0\frac{(1+x)\ln^3{x}\ln(1-x^2)}{(1+x)(1-x)}{\rm d}x\\ =&\int^1_0\frac{\ln^3{x}\ln(1-x)}{1-x}{\rm d}x-\int^1_0\frac{\ln^3{x}\ln(1-x^2)}{1-x^2}{\rm d}x-\int^1_0\frac{x\ln^3{x}\ln(1-x^2)}{1-x^2}{\rm d}x\\ =&\frac{15}{16}\int^1_0\frac{\ln^3{x}\ln(1-x)}{1-x}{\rm d}x-\frac{1}{16}\int^1_0\frac{x^{-1/2}\ln^3{x}\ln(1-x)}{1-x}{\rm d}x\\ =&\frac{15}{16}\frac{\partial^4\beta}{\partial a^3 \partial b}(1,0^{+})-\frac{1}{16}\frac{\partial^4\beta}{\partial a^3 \partial b}(0.5,0^{+}) \end{align} After differentiating and expanding at $b=0$ (with the help of Mathematica), \begin{align} &\frac{\partial^4\beta}{\partial a^3 \partial b}(a,0^{+})\\ =&\left[\frac{\Gamma(a)}{\Gamma(a+b)}\left(\frac{1}{b}+\mathcal{O}(1)\right)\left(\left(-\frac{\psi_4(a)}{2}+(\gamma+\psi_0(a))\psi_3(a)+3\psi_1(a)\psi_2(a)\right)b+\mathcal{O}(b^2)\right)\right]_{b=0}\\ =&-\frac{1}{2}\psi_4(a)+(\gamma+\psi_0(a))\psi_3(a)+3\psi_1(a)\psi_2(a) \end{align} Therefore, \begin{align} -&\int^1_0\frac{\ln^3{x}\ln(1+x)}{1-x}{\rm d}x\\ =&-\frac{15}{32}\psi_4(1)+\frac{45}{16}\psi_1(1)\psi_2(1)+\frac{1}{32}\psi_4(0.5)+\frac{1}{8}\psi_3(0.5)\ln{2}-\frac{3}{16}\psi_1(0.5)\psi_2(0.5)\\ =&-12\zeta(5)+\frac{3\pi^2}{8}\zeta(3)+\frac{\pi^4}{8}\ln{2} \end{align} The relation between $\psi_{m}(1)$, $\psi_m(0.5)$ and $\zeta(m+1)$ is established easily using the series representation of the polygamma function.


\begin{align} \int_0^1\frac{\ln(1+x)\ln^3x}{1-x}\ dx&=-\sum_{n=1}^\infty\frac{(-1)^n}{n}\int_0^1\frac{x^{n}\ln^3x}{1-x}\ dx=6\sum_{n=1}^\infty\frac{(-1)^n}{n}\left(\zeta(4)-H_n^{(4)}\right)\\ &=-6\ln2\zeta(4)-6\sum_{n=1}^\infty\frac{(-1)^nH_n^{(4)}}{n}\tag{1} \end{align} evaluating the sum: \begin{align} \sum_{n=1}^\infty\frac{(-1)^nH_n^{(4)}}{n}&=\int_0^1\frac{\operatorname{Li}_4(-x)}{x(1+x)}\ dx=\int_0^1\frac{\operatorname{Li}_4(-x)}{x}\ dx-\underbrace{\int_0^1\frac{\operatorname{Li}_4(-x)}{1+x}\ dx}_{\text{IBP}}\\ &=\operatorname{Li}_5(-1)-\ln2\operatorname{Li}_4(-1)+\underbrace{\int_0^1\frac{\ln(1+x)\operatorname{Li}_3(-x)}{x}\ dx}_{\text{IBP}}\\ &=\operatorname{Li}_5(-1)-\ln2\operatorname{Li}_4(-1)-\operatorname{Li}_2(-1)\operatorname{Li}_3(-1)+\int_0^1\frac{\operatorname{Li}_2^2(-x)}{x}\ dx\\ &=-\frac{15}{16}\zeta(5)+\frac78\ln2\zeta(4)-\frac38\zeta(2)\zeta(3)-\int_0^1\frac{\operatorname{Li}_2^2(-x)}{x}\ dx \tag{2} \end{align} and the last integral: \begin{align} \int_0^1\frac{\operatorname{Li}_2^2(-x)}{x}\ dx&=\int_0^1\frac1x\left(\frac12\operatorname{Li}_2(x^2)-\operatorname{Li}_2(x)\right)^2\ dx\\ &=\underbrace{\frac14\int_0^1\frac{\operatorname{Li}_2^2(x^2)}{x}\ dx}_{x^2=y}-\int_0^1\frac{\operatorname{Li}_2(x^2)\operatorname{Li}_2(x)}{x}\ dx+\int_0^1\frac{\operatorname{Li}_2^2(x)}{x}\ dx\\ &=\frac98\int_0^1\frac{\operatorname{Li}_2^2(x)}{x}\ dx-\int_0^1\frac{\operatorname{Li}_2(x^2)\operatorname{Li}_2(x)}{x}\ dx\\ &=\frac98\sum_{n=1}^\infty\frac1{n^2}\int_0^1x^{n-1}\operatorname{Li}_2(x)\ dx-\sum_{n=1}^\infty\frac1{n^2}\int_0^1x^{2n-1}\operatorname{Li}_2(x)\ dx\\ &=\frac98\sum_{n=1}^\infty\frac1{n^2}\left(\frac{\zeta(2)}{n}-\frac{H_n}{n^2}\right)-\sum_{n=1}^\infty\frac1{n^2}\left(\frac{\zeta(2)}{2n}-\frac{H_{2n}}{(2n)^2}\right)\\ &=\frac98\zeta(2)\zeta(3)-\frac98\sum_{n=1}^\infty\frac{H_n}{n^4}-\frac12\zeta(2)\zeta(3)+4\sum_{n=1}^\infty\frac{H_{2n}}{(2n)^4}\\ &=\frac58\zeta(2\zeta(3)+\frac78\sum_{n=1}^\infty\frac{H_n}{n^4}+2\sum_{n=1}^\infty\frac{(-1)^nH_n}{n^4}\\ &=\frac58\zeta(2)\zeta(3)+\frac78\left(3)\zeta(5)-\zeta(2)\zeta(3)\right)+2\left(\frac12\zeta(2)\zeta(3)-\frac{59}{32}\zeta(5)\right)\\ &=\frac34\zeta(2)\zeta(3)-\frac{17}{16}\zeta(5)\tag{3} \end{align}

plugging $(3)$ in $(2)$ we have $$\sum_{n=1}^\infty\frac{(-1)^nH_n^{(4)}}{n}=\frac78\ln2\zeta(4)+\frac38\zeta(2)\zeta(3)-2\zeta(5)$$ plugging this result in $(1)$ we have $$\int_0^1\frac{\ln(1+x)\ln^3x}{1-x}\ dx=12\zeta(5)-\frac{45}{4}\ln2\zeta(4)-\frac94\zeta(2)\zeta(3)$$