Closed-forms of infinite series with factorial in the denominator
Another possible approach is to use the discrete Fourier transform. Let $\omega=\exp\frac{2\pi i}{3}$. Then: $$f(n)=\frac{1}{3}\left(1+\omega^n+\omega^{2n}\right)=\mathbb{1}_{n\equiv 0\!\pmod{3}}(n),$$ hence: $$\color{red}{\sum_{n=0}^{+\infty}\frac{1}{(3n)!}}=\sum_{n=0}^{+\infty}\frac{f(n)}{n!}=\frac{1}{3}\left(\exp(1)+\exp(\omega)+\exp(\omega^2)\right)=\color{red}{\frac{e}{3}+\frac{2}{3\sqrt{e}}\cos\frac{\sqrt{3}}{2}.}$$ The other two series can be computed with the same technique, by noticing that: $$f_1(n)=\frac{1}{3}\left(1+\omega^2\cdot\omega^n+\omega\cdot\omega^{2n}\right)=\mathbb{1}_{n\equiv 1\!\pmod{3}}(n),$$ $$f_2(n)=\frac{1}{3}\left(1+\omega\cdot\omega^n+\omega^2\cdot\omega^{2n}\right)=\mathbb{1}_{n\equiv 2\!\pmod{3}}(n).$$
Related techniques: (I). Here is an approach which enables you to tackle your problems. Let's consider the series
$$ f(x) = \sum_{n=0}^{\infty}\frac{x^{3n}}{(3n)!}. $$
Taking the Laplace transform gives
$$ F(s) = \sum_{n=0}^{\infty}\frac{1}{s^{3n+1}} = \frac{s^2}{s^3-1}. $$
To finish the problem you need to find the inverse Laplace of $F(s)$. One technique is partial fraction
$$ F(s) = \frac{1}{3(s-1)} + \frac{1}{3(s+1/2-i\sqrt{3}/2)} + \frac{1}{3(s+1/2+i\sqrt{3}/2)} .$$
Notes:
1) Laplace transform is defined as
$$ F(s) = \int_{0}^{\infty}f(x)e^{-sx}dx. $$
2) Laplace transform of $x^m$ is
$$ \frac{\Gamma(m+1)}{s^{m+1}} $$
3) Laplace transform of $e^{ax}$ is
$$ \frac{1}{s-a}. $$
Or equivalently the inverse Laplace of $\frac{1}{s-a}$ is $e^{ax}$
$$ $$
$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ With $\ds{\ell = 0,1,2}$:
\begin{align} {\cal I}_{\ell}&\equiv\sum_{n = 0}^{\infty}{1 \over \pars{3n + \ell}!}= \sum_{n = 0}^{\infty}\sum_{k=0}^{\infty}{\delta_{k,3n + \ell} \over k!} =\sum_{n,k = 0}^{\infty}{1 \over k!} \oint_{\atop{\atop\verts{z}\ =\ a\ >\ 1}}{1 \over z^{3n + \ell - k + 1}} \,{\dd z \over 2\pi\ic} \\[3mm]&=\oint_{\atop{\atop\verts{z}\ =\ a\ >\ 1}}{1 \over z^{\ell + 1}} \bracks{\sum_{n = 0}^{\infty}\pars{1 \over z^{3}}^{n}} \bracks{\sum_{k = 0}^{\infty}{z^{k} \over k!}}\,{\dd z \over 2\pi\ic} \\[3mm]&=\oint_{\atop{\atop\verts{z}\ =\ a\ >\ 1}}{1 \over z^{\ell + 1}} \,{1 \over 1 - 1/z^{3}}\,\expo{z}\,{\dd z \over 2\pi\ic} =\oint_{\atop{\atop\verts{z}\ =\ a\ >\ 1}} {z^{2 - \ell} \over z^{3} - 1}\,\expo{z}\,{\dd z \over 2\pi\ic} \\[3mm]&=\sum_{m = -1}^{1}{z_{m}^{2 - \ell}\expo{z_{m}} \over 3z_{m}^{2}}\qquad \mbox{where}\qquad z_{m} \equiv \exp\pars{2m\pi\ic \over 3}\,,\quad m = -1,0,1 \end{align}
Then, \begin{align} {\cal I}_{\ell} &= {1 \over 3} \sum_{m = -1}^{1}z_{m}^{-\ell}\expo{z_{m}} ={1 \over 3}\,\expo{} + {2 \over 3}\,\Re\pars{z_{1}^{-\ell}\expo{z_{1}}} ={1 \over 3}\,\expo{} +{2 \over 3}\,\Re\pars{\expo{-2\ell\pi\ic/3}\exp\pars{\expo{2\pi\ic/3}}} \\[3mm]&={1 \over 3}\,\expo{} +{2 \over 3}\, \Re\pars{\expo{-2\ell\pi\ic/3}\exp\pars{-\,\half + {\root{3} \over 2}\,\ic}} \\[3mm]&={1 \over 3}\,\expo{} +{2 \over 3\root{\expo{}}}\, \Re\exp\pars{\bracks{{\root{3} \over 2} - {2\pi \over 3}\,\ell}\ic} \end{align}
$$ {\cal I}_{\ell}\equiv\sum_{n = 0}^{\infty}{1 \over \pars{3n + \ell}!} ={1 \over 3}\,\expo{} +{2 \over 3\root{\expo{}}}\,\cos\pars{{\root{3} \over 2} - {2\pi \over 3}\,\ell} \,,\qquad\ell = 0,1,2 $$
$$\begin{array}{rclcl} {\cal I}_{0}&=&\color{#66f}{\large\sum_{n = 0}^{\infty}{1 \over \pars{3n}!}} &=&{1 \over 3}\,\expo{} +{2 \over 3\root{\expo{}}}\,\cos\pars{{\root{3} \over 2}} \\[5mm] {\cal I}_{1}&=&\color{#66f}{\large\sum_{n = 0}^{\infty}{1 \over \pars{3n + 1}!}} &=&{1 \over 3}\,\expo{} +{2 \over 3\root{\expo{}}}\ \overbrace{\cos\pars{{\root{3} \over 2} - {2\pi \over 3}}} ^{\ds{\color{#c00000}{\sin\pars{{\root{3} \over 2} - {\pi \over 6}}}}} \\[5mm] {\cal I}_{2}&=&\color{#66f}{\large\sum_{n = 0}^{\infty}{1 \over \pars{3n + 2}!}} &=&{1 \over 3}\,\expo{} +{2 \over 3\root{\expo{}}}\ \underbrace{\cos\pars{{\root{3} \over 2} - {4\pi \over 3}}} _{\ds{\color{#c00000}{-\sin\pars{{\root{3} \over 2} + {\pi \over 6}}}}} \end{array} $$