Color by Column Values in Matplotlib

https://seaborn.pydata.org/generated/seaborn.scatterplot.html

import numpy 
import pandas
import seaborn as sns

numpy.random.seed(0)
N = 37
_genders= ['Female', 'Male', 'Non-binary', 'No Response']
df = pandas.DataFrame({
    'Height (cm)': numpy.random.uniform(low=130, high=200, size=N),
    'Weight (kg)': numpy.random.uniform(low=30, high=100, size=N),
    'Gender': numpy.random.choice(_genders, size=N)
})

sns.scatterplot(data=df, x='Height (cm)', y='Weight (kg)', hue='Gender')

enter image description here


Imports and Data

import numpy 
import pandas
import matplotlib.pyplot as plt
import seaborn as sns
seaborn.set(style='ticks')

numpy.random.seed(0)
N = 37
_genders= ['Female', 'Male', 'Non-binary', 'No Response']
df = pandas.DataFrame({
    'Height (cm)': numpy.random.uniform(low=130, high=200, size=N),
    'Weight (kg)': numpy.random.uniform(low=30, high=100, size=N),
    'Gender': numpy.random.choice(_genders, size=N)
})

Update August 2021

  • With seaborn 0.11.0, it's recommended to use new figure level functions like seaborn.relplot than to use FacetGrid directly.
sns.relplot(data=df, x='Weight (kg)', y='Height (cm)', hue='Gender', hue_order=_genders, aspect=1.61)
plt.show()

Update October 2015

Seaborn handles this use-case splendidly:

  • Map matplotlib.pyplot.scatter onto a seaborn.FacetGrid
fg = sns.FacetGrid(data=df, hue='Gender', hue_order=_genders, aspect=1.61)
fg.map(plt.scatter, 'Weight (kg)', 'Height (cm)').add_legend()

Which immediately outputs:

enter image description here

Old Answer

In this case, I would use matplotlib directly.

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

def dfScatter(df, xcol='Height', ycol='Weight', catcol='Gender'):
    fig, ax = plt.subplots()
    categories = np.unique(df[catcol])
    colors = np.linspace(0, 1, len(categories))
    colordict = dict(zip(categories, colors))  

    df["Color"] = df[catcol].apply(lambda x: colordict[x])
    ax.scatter(df[xcol], df[ycol], c=df.Color)
    return fig

if 1:
    df = pd.DataFrame({'Height':np.random.normal(size=10),
                       'Weight':np.random.normal(size=10),
                       'Gender': ["Male","Male","Unknown","Male","Male",
                                  "Female","Did not respond","Unknown","Female","Female"]})    
    fig = dfScatter(df)
    fig.savefig('fig1.png')

And that gives me:

scale plot with categorized colors

As far as I know, that color column can be any matplotlib compatible color (RBGA tuples, HTML names, hex values, etc).

I'm having trouble getting anything but numerical values to work with the colormaps.


Actually you could use ggplot for python:

from ggplot import *
import numpy as np
import pandas as pd

df = pd.DataFrame({'Height':np.random.randn(10),
                   'Weight':np.random.randn(10),
                   'Gender': ["Male","Male","Male","Male","Male",
                              "Female","Female","Female","Female","Female"]})


ggplot(aes(x='Height', y='Weight', color='Gender'), data=df)  + geom_point()

ggplot in python


You can use the color parameter to the plot method to define the colors you want for each column. For example:

from pandas import DataFrame
data = DataFrame({'a':range(5),'b':range(1,6),'c':range(2,7)})
colors = ['yellowgreen','cyan','magenta']
data.plot(color=colors)

Three lines with custom colors

You can use color names or Color hex codes like '#000000' for black say. You can find all the defined color names in matplotlib's color.py file. Below is the link for the color.py file in matplotlib's github repo.

https://github.com/matplotlib/matplotlib/blob/master/lib/matplotlib/colors.py