Combinatorial proof of $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(l-k)^n=n!$, using inclusion-exclusion
Assume that $\ell\ge n$. We want to count the injections from $[n]$ to $[\ell]$ whose range is $[n]$. For each $k\in[n]$ let $A_k$ be the set of functions from $[n]$ to $[\ell]\setminus\{k\}$. It’s not hard to see that for any non-empty $I\subseteq[n]$ we have
$$\left|\,\bigcap_{k\in I}A_k\,\right|=(\ell-|I|)^n\;,$$
so by the inclusion-exclusion principle we have
$$\begin{align*}\left|\,\bigcup_{k=1}^nA_k\,\right|&=\sum_{\varnothing\ne I\subseteq[n]}(-1)^{|I|-1}(\ell-|I|)^n\\ &=\sum_{k=1}^n\binom{n}k(-1)^{k-1}(\ell-k)^n\;. \end{align*}$$
This is the number of functions from $[n]$ to $[\ell]$ that miss at least one element of $[n]$, so we want the size of the complementary set, which is
$$\begin{align*} \ell^n-\sum_{k=1}^n\binom{n}k(-1)^{k-1}(\ell-k)^n&=(-1)^0\binom{n}0(\ell-0)^n+\sum_{k=1}^n(-1)^k\binom{n}k(\ell-k)^n\\ &=\sum_{k=0}^n(-1)^k\binom{n}k(\ell-k)^n\;. \end{align*}$$
Of course there are $n!$ injections from $[n]$ to $[\ell]$ with range $[n]$, so
$$\sum_{k=0}^n(-1)^k\binom{n}k(\ell-k)^n=n!\tag{1}$$
for $\ell\ge n$.
Let
$$p(x)=n!-\sum_{k=0}^n(-1)^k\binom{n}k(x-k)^n\;;$$
$p(x)$ is a polynomial in $x$ of degree $n$, and every integer $\ell\ge n$ is a zero of $p(x)$, so $p(x)$ must be constant, and therefore
$$\sum_{k=0}^n(-1)^k\binom{n}k(x-k)^n=n!$$
for all $x$: $x$ need not even be an integer.